

A Note on the Cyclic Groups

Samad Rashid

Department of Mathematics, College of Basic Science, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran

samadrashid47@yahoo.com

Abstract: In this paper, some homological functors for cyclic groups and linear groups of finite order are considered.

Keywords: Cyclic groups, multiplier, linear groups.

1. Introduction

The Schur multiplier of a group G, M(G), is named after Issai Schur. According to Hopf's Formula, $M(G) \cong$ $(F' \cap R)/[F,R]$ where $R \rightarrow F \twoheadrightarrow G$ is presentation of the group G. The nonabelian tensor square has been discovered by Dennis [1] in 1976. The nonabelian tensor square, $G \otimes G$, of the group G is a group generated by the symbols $g \otimes h$ and defined by the relations $gg' \otimes h = ({}^gg' \otimes {}^gh)(g \otimes h)$ and $g \otimes hh' = (g \otimes h)({}^hg \otimes {}^hh')$ for all $g, g', h, h' \in G$, where Gacts on itself by conjugation, i.e. ${}^{g}g'=gg'g^{-1}$.

In 1987, Brown and Loday [2] introduced the concept of nonabelian tensor square in their paper. In their second paper [3], they provided a list of open problems on this topic, and this paper became one of the most original papers that is referred to by many mathematicians [4–6].

A group G is capable if there exists a group H such that $G \cong H/Z(H)$. Ellis [7] proved that a group G is capable if and only if its exterior center $Z^{\wedge}(G)$ is trivial. In 1979, Beyl et al. [8] established a necessary and sufficient condition for a group to be capable, that is, a group is capable if and only if the epicenter $Z^*(G)$ of the group is trivial. In this thesis, the Schur multiplier, nonabelian tensor square and capability of groups of orders p^2q and p^3q , special linear groups, projective special linear groups, symplectic groups and projective symplectic groups will be determined, where p and qare distinct primes and for groups of order p^3q , p < q.

2. Definitions and Basic Theorems

In this section some definitions and preparatory theorems that are necessary in the following chapters are stated.

Definition 1: [9] Let G be a group and X a subset of G. Let $\{H_i|i\in I\}$ be the family of all subgroups of G which contains X. Then $\bigcap_{i\in I} H_i$ is called the subgroup of G generated by the set X, and is denoted by $\langle X \rangle$.

Definition 2: [9] Let G be a group. The subgroup of G generated by the set $\{xyx^{-1}y^{-1}|x,y\in G\}$ is called the commutator subgroup of G and denoted by G'.

Definition 3: [9] A group G is said to be solvable if $G^{(n)} =$ {1} for some n, where $G^{(n)} = (G^{(n-1)})'$ is called the n-th derived subgroup of G.

Definition 4: [10] A finite p-group G is called extra-special if G' and Z(G) coincide and have order p.

Definition 5: [11] A normal subgroup N of G is called a normal Hall subgroup of G if the order of N is coprime with its index in G.

Definition 6: [11] A group G is termed metacyclic if there exists a normal subgroup N of G such that both N and G/N

A metacyclic group can be presented in the form

$$G = \langle a, b | a^m = 1, b^s = a^t, bab^{-1} = a^r \rangle$$

where the positive integers m, r, s and t satisfy

$$r^s \equiv 1 \pmod{m}, \qquad m|t(r-1).$$

Some definitions on the linear groups are presented in the following:

Definition 7: [12] The general linear group $GL_n(F_q)$ of degree n is the set of $n \times n$ invertible matrices, together with the operation of ordinary matrix multiplication, that is, $GL_n(F_q) = \{A_{n \times n}; |A| \neq 0\}$ where F_q is a field with q ele-

Definition 8: [12] The special linear group, $SL_n(F_q)$, is the group of all matrices with determinant 1, that is, $SL_n(F_q) =$ ${A \in GL_n(F_q); |A| = 1}.$

Definition 9: [12] The projective general linear group, $PGL_n(F_q)$ and the projective special linear group $PSL_n(F_q)$ are the quotients of $GL_n(F_q)$ and $SL_n(F_q)$ by their centers, respectively.

Definition 10: [12] A symplectic matrix is a $2n \times 2n$ matrix M (whose entries are typically either real or complex) satisfying the condition $M^T\Omega M=\Omega$ where M^T denotes the transpose of M and Ω is a fixed nonsingular, skew-symmetric matrix. Typically Ω is chosen to be the block matrix

$$\begin{bmatrix} O & -I_n \\ I_n & O \end{bmatrix}$$
.

 $\begin{bmatrix} O & -I_n \\ I_n & O \end{bmatrix}.$ Definition 11: [12] The symplectic group of degree 2n over a field F_q , denoted by $Sp_{2n}(F_q)$, is the group of 2n by 2nsymplectic matrices with entries in F_q , and with the group operation that of matrix multiplication.

Definition 12: [12] The projective symplectic group $PSp_{2n}(F_q)$ is the group obtained from the symplectic group $Sp_{2n}(F_q)$ on factoring by the scalar matrices contained in

The following theorem gives elementary results on group theory that will be used in the subsequent chapters.

Theorem 1: [9] Let G be a group and $H, K \leq G$.

- (i) Suppose $H \subseteq G$. Then G/H is abelian if and only if $G' \subseteq H$.
- (ii) Then G^{ab} is abelian.
- (iii) If $H, K \subseteq G, K \subseteq H$, then

$$[H,G] \le K \Leftrightarrow H/K \le Z(G/K).$$

- (iv) If G/Z(G) is cyclic, then G is abelian.
- (v) G is abelian if and only if $G' = \{1\}$.
- (vi) If G is a nontrivial group and $exp(G^{ab}) \ge |G'|$, then $Z(G) \ne 1$, where $exp(G^{ab})$ is the least common multiple of the orders of all elements of the group G^{ab} .

In the following theorem, direct product and semidirect product of two groups are written in their presentation forms. *Theorem 2*: [9]

(i) If $G=< S_G|R_G>$ and $H=< S_H|R_H>$, where S_G and S_H are (disjoint) generating sets and R_G and R_H are defining relations. Then

$$G \times H = \langle S_G \cup S_H | R_G \cup R_H \cup R_P \rangle$$

where R_P is a set of relations specifying that each element of S_G commutes with each element of S_H .

(ii) Let $C_m = \langle a | a^m = e \rangle$ and $C_n = \langle b | b^n = e \rangle$. Then the semidirect product of C_m and C_n is given by a single relation $aba^{-1} = b^k$ where (k,n) = 1.

The existence of a complement of a group ${\cal G}$ is stated in the next theorem.

Theorem 3: (Schur-Zassenhaus):[10] Let N be normal subgroup of G. Assume that |N|=n and [G:N]=m are relatively prime. Then G contains subgroups of order m and any two of them are conjugate in G.

This theorem asserts that the complement of G exists and the two are conjugate. Also it shows that if G/N is cyclic, then the complement of N is too.

Since all the groups considered in this thesis are finite, it can be proved in some cases that each Sylow subgroup of a group G are cyclic by the use of the following theorem.

Theorem 4: (Zassenhaus-Burnside-Holder): [10] Suppose G is a finite group such that each Sylow subgroups of G are cyclic, then $G=\langle a,b|a^m=b^n,b^{-1}ab=a^r>$, where m is odd, $m\big|r^n-1,\,0\leq r\leq m-1$ and (m,n(r-1))=1. Conversely, if a group G has this structure, then each Sylow subgroup of G are cyclic. In this group G' and G^{ab} are cyclic

In the following theorem, the classification of groups of order pq is presented.

Theorem 5: [9] Let p and q be primes such that p>q. If $q\nmid p-1$, then every group of order pq is isomorphic to the cyclic group \mathbb{Z}_{pq} . If q|p-1, then there are (up to isomorphism) exactly two distinct groups of order pq: the cyclic group \mathbb{Z}_{pq} and a nonabelian group K generated by elements c and d such that $|c|=p, |d|=q, dc=c^sd$, where $p\nmid s-1$ and $p\mid s^q-1$.

For groups of order p^2q , the following theorem is stated: Theorem 6: [13] Let G be a group of order p^2q where p and q are distinct primes. Then exactly one of the following holds:

- (i) If p > q, then G has a normal Sylow p-subgroup.
- (ii) If q > p, then G has a normal Sylow q-subgroup.
- (iii) If p=2, q=3, then $G\cong A_4$ and G has a normal Sylow 2-subgroup.

In the following theorem the classification of groups of order p^3 is stated:

Theorem 7: [10] Let G be a group of order p^3 , where p is an odd prime. Then exactly one of the following holds:

 $(2.7.1) G \cong \mathbb{Z}_{n^3}.$

 $(2.7.2) G \cong \mathbb{Z}_{p^2} \times \mathbb{Z}_p.$

 $(2.7.3) G \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p.$

(2.7.4) $G \cong \langle a, b | a^p = b^p = 1, [a, b]^a = [a, b] = [a, b]^b >$. In this case exp(G) = p.

(2.7.5) $G \cong \langle a, b | a^{p^2} = b^p = 1, a^b = a^{p+1} \rangle$. In this case $exp(G) = p^2$.

The following theorem is a well-known fact concerning the commutator subgroup and center of groups of order p^3 .

Theorem 8: Let G be a nonabelian group of order p^3 , where p is a prime. Then

- (i) $Z(G) \cong \mathbb{Z}_p$.
- (ii) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.
- $(iii) G' \cong \mathbb{Z}_p$

In 1899, Western [14] obtained the classification of groups of order p^3q . Western proved that there are 27 types of groups of order p^3q , where p < q. In the next theorem, the classification of groups of order p^3q where p < q is stated. These classifications are the most important that will be used in the subsequent chapters to determine the Schur multiplier, nonabelian tensor square and capability of groups of order p^3q .

Theorem 9: [14] Let G be a nonabelian group of order p^3q , where p and q are distinct primes and p < q. Then exactly one of the following holds:

- $(2.9.1) < a, b, c | a^4 = b^2 = c^q = 1, bab = a^{-1}, ac = ca, bc = cb > 0$
- (2.9.2)< $a,b,c|a^4=b^4=c^q=1,b^2=a^2,b^{-1}ab=a^{-1},ac=ca,bc=cb>.$
- $(2.9.3) < a, b|a^8 = b^q = 1, a^{-1}ba = b^{-1} >.$
- $(2.9.4) < a, b, c | a^4 = b^2 = c^q = 1, ab = ba, ac = ca, bcb = c^{-1} > .$
- $(2.9.5) < a, b, c | a^4 = b^2 = c^q = 1, ab = ba, a^{-1}ca = c^{-1}, bc = cb >.$
- $(2.9.6) < a,b,c,d|a^2 = b^2 = c^2 = d^q = 1, ab = ba, ac = ca, bc = cb, ad = da, bc = cb, cdc = d^{-1} >.$
- $(2.9.7) < a, b, c | a^4 = b^2 = c^q = 1, bab = a^{-1}, ac = ca, bcb = c^{-1} > 0$
- (2.9.8) $< a, b, c | a^4 = b^2 = c^q = 1, bab = a^{-1}, a^{-1}ca = c^{-1}, bc = cb >, q \equiv 1 \pmod{2}.$
- $(2.9.9) < a, b, c | a^4 = b^4 = c^q = 1, b^2 = a^2, b^{-1}ab = a^{-1}, ac = ca, b^{-1}cb = c^{-1} >.$
- $(2.9.10) < a, b | a^8 = b^q = 1, a^{-1}ba = c^m$, where m is any primitive root of $m^4 \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{4}$.
- (2.9.11) $< a,b,c | a^4 = b^2 = c^q = 1, ab = ba, a^{-1}ca = c^m, bc = cb >$, where m is any primitive root of $m^4 \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{4}$.
- $(2.9.12) < a, b|a^8 = b^q = 1, a^{-1}ba = b^m$, where m is any primitive root of $m^8 \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{8}$.
- $(2.9.13) < a, b, c, d | a^2 = b^2 = c^2 = d^q = 1, ab = ba, ac = 0$

Samad Rashid 21

 $ca, bc = cb, ad = da, d^{-1}bd = c, d^{-1}cd = bc >.$ $(2.9.14) < a,b,c|a^4 = b^4 = c^3 = 1,a^2 = b^2,b^{-1}ab =$ $a^{-1}, c^{-1}ac = b, c^{-1}bc = ab >$. $(2.9.15) < a, b, c | a^4 = b^4 = c^3 = 1, bab = a^{-1}, c^{-1}a^2b = a^{-1}$ $b, c^{-1}bc = a^2b, a^{-1}ca = c^2a^2b >$. $(2.9.16) < a, b, c, d | a^2 = b^2 = c^2 = d^7 = 1, ab = ba, ac = d^7 = 1$ $ca, bc = cb, d^{-1}ad = b, d^{-1}bd = c, d^{-1}cd = ab >.$ $(2.9.17) < a, b, c | a^{p^2} = b^p = c^q = 1, b^{-1}ab = a^{p+1}, ac = a^{p+1}$ ca, bc = cb >. $(2.9.18) < a, b, c, d | a^p = b^p = c^p = d^q = 1, ab = ba, ac =$ $ca, c^{-1}bc = ab, ad = da, bd = db, cd = dc >$. $(2.9.19) < a, b | a^{p^3} = b^q = 1, a^{-1}ba = b^m a$, where m is any primitive root of $m^p \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{p}$. $(2.9.20) < a,b,c|a^{p^2} = b^p = c^q = 1,ab = ba,ac =$ $ca, b^{-1}cb = c^m >$, where m is any primitive root of $m^p \equiv 1$ \pmod{q} and $q \equiv 1 \pmod{p}$. $(2.9.21) < a,b,c|a^{p^2} = b^p = c^q = 1,ab = ba,a^{-1}ca =$ $c^m, bc = cb >$, where m is any primitive root of $m^p \equiv 1$ \pmod{q} and $q \equiv 1 \pmod{p}$. $(2.9.22) < a, b, c, d | a^p = b^p = c^p = d^q = 1, ab = ba, ac = 0$ $ca, bc = cb, ad = da, bd = db, c^{-1}dc = d^m >$, where m is any primitive root of $m^p \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{p}$. $(2.9.23) < a,b,c|a^{p^2} = b^p = c^q = 1,b^{-1}ab = a^{p+1},ac = 0$ $ca, b^{-1}cb = c^n >$, where m is any primitive root of $m^p \equiv 1$ $(\text{mod } q), q \equiv 1 \pmod{p} \text{ and } n = m, m^2, ..., m^{p-1}.$ $(2.9.24) < a, b, c, d | a^p = b^p = c^p = d^q = 1, ab = ba, ac =$ $ca, ad = da, bd = db, c^{-1}bc = ab, c^{-1}dc = d^m >$, where m is any primitive root of $m^p \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{p}$.

any primitive root of $m^p \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{p}$. $(2.9.25) < a, b | a^{p^3} = b^q = 1, a^{-1}ba = b^m$, where m is any primitive root of $m^{p^2} \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{p^2}$.

(2.9.26) $\langle a,b,c|a^{p^2}=b^p=c^q=1,ab=ba,a^{-1}ca=c^a,bc=cb\rangle$, where m is any primitive root of $m^{p^2}\equiv 1\pmod q$ and $q\equiv 1\pmod {p^2}$.

 $(2.9.27) < a, b | a^{p^3} = b^q = 1, a^{-1}ba = b^m$, where m is any primitive root of $m^{p^3} \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{p^3}$. In this research, these groups are referred to as groups of type (2.9.1)-(2.9.27).

In the following two theorems, the commutator subgroup of some linear groups are given.

Theorem 10: [15] Let q > 3. Then (i) $(SL_2(F_q))' = SL_2(F_q)$. (ii) $(PSL_2(F_q))' = PSL_2(F_q)$. (iii) $(GL_2(F_q))' = SL_2(F_q)$. (iv) $(PGL_2(F_q))' = PSL_2(F_q)$.

Theorem 11: [15]

(i) $SL_n(F_q)$ and $PSL_n(F_q)$ are perfect groups, except when (n,q)=(2,2),(2,3).

 $(ii) (GL_n(F_q))' = SL_n(F_q).$

 $(iii) (PGL_n(F_q))' = PSL_n(F_q).$

(iv) If $(n,q) \neq (2,2), (2,3), (4,2)$, then $Sp_{2n}(F_q)$ and $PSp_{2n}(F_q)$ are perfect groups, where

 $PSp_2(F_2) \cong PSL_2(F_2) \cong S_3, PSp_2(F_2) \cong S_6.$

3. The Schur Multiplier

In this section, some definitions are stated to define the Schur multiplier of a group G. Basic results on the Schur multiplier will also be presented in this section.

Definition 13: [10] The homology $H(\mathbf{C})$ of the complex \mathbf{C} is the sequence of R- modules $H_n(\mathbf{C})$ =Ker $\partial_n/\mathrm{Im}\ \partial_{n+1}$ which are usually referred to as the homology groups of \mathbf{C} . Thus \mathbf{C} is exact if and only if all the homology groups vanish.

Definition 14: [10] A complex C is called positive if $C_n = 0$ for n < 0.

Definition 15: [10] Let M be a right R-module. By a right R-resolution of M is meant a positive right R-complex \mathbb{C} and an epimorphism $\varepsilon: C_0 \to M$ such that

$$\dots \to C_2 \to C_1 \to C_0 \to M \to 0$$

is exact. The resolution is said to be free (projective) if \mathbf{C} is free (projective).

Definition 16: [10] The complex of \mathbb{Z} -modules

$$\dots \to M \otimes_{\mathbb{Z}G} P_{n+1} \to M \otimes_{\mathbb{Z}G} P_n \to M \otimes_{\mathbb{Z}G} P_{n-1} \to \dots$$

is denoted by $M \otimes_{\mathbb{Z}G} \mathbf{P}$ and the n-th homology group of G with coefficients in M to be the abelian group $H_n(G, M) = H_n(M \otimes_{\mathbb{Z}G} \mathbf{P})$.

The definition of the Schur multiplier is stated in the following:

Definition 17: [10] Let G be any group and \mathbb{Z} as a trivial G-module. Then $H_2(G,\mathbb{Z})=H_2(G)$ is known as the Schur multiplier of G.

In this research, the Schur multiplier of a group G is denoted as M(G).

Definition 18: [10] A group G^* is said to be a covering group of G if G^* has a subgroup A such that

- (i) $A \subseteq Z(G^*) \cap [G^*, G^*]$,
- (ii) $\stackrel{\frown}{A} \cong M(G)$,
- (iii) $G \cong G^*/A$.

Theorem 12: [10] (Hopf's Formula). If $R \mapsto F \twoheadrightarrow G$ is a presentation of a group G, then $M(G) \cong (F' \cap R)/[F,R]$. In particular, this factor does not depend on the presentation. Theorem 13: [11]

(i) M(G) is a finite group whose elements have order dividing the order of G. (ii) M(G) = 1 if G is cyclic.

Theorem 14: [11] If for all p|G| the Sylow p-subgroups of G are cyclic, then M(G) = 1.

By the use of the following two theorems, the Schur multiplier of a group G can be computed whenever G is isomorphic to a direct product (or a semidirect product) of two groups.

Theorem 15: [11] If G_1 and G_2 are finite groups, then

 $M(G_1 \times G_2) = M(G_1) \times M(G_2) \times (G_1 \otimes G_2).$ Theorem 16: [11] Let N be a normal Hall subgroup of G, i.e. (|G|, |G/N|) = 1 and T be a complement of N in G. Then $M(G) \cong M(T) \times M(N)^T$.

In this research, a group of order p^2q and p^3q can be presented as a direct product or semidirect product of two

groups, and in some cases one of them is S_n, A_n, D_n, Q_n or metacyclic group.

In the following two theorems, the Schur multiplier of these groups are presented.

Theorem 17: [11]

$$M(S_n) = \begin{cases} 1 & ; n \leq 3, \\ \mathbb{Z}_2 & ; n > 4. \end{cases}$$

where S_n is symmetric group of order n!.

Theorem 18: [11] Let G be a finite metacyclic group, i.e. $G=\langle a,b|a^m=e,b^s=a^t,bab^{-1}=a^r>$, where the positive integers $m,\ r,\ s$ and t satisfy $r^s\equiv 1\pmod m$ and m|t(r-1) and t|m. Then $M(G)\cong \mathbb{Z}_n$, where $n=\frac{(r-1,m)(1+r+r^2+...+r^{s-1},t)}{2}$

The next theorem states three equivalent conditions that can be used for computing the Schur multiplier of some types of groups given in Theorem 2.9.

Theorem 19: [11] Let Z be a central subgroup of a finite group G. Then the following conditions are equivalent:

- (i) $M(G) \cong M(G/Z)/(G' \cap Z)$,
- (ii) $Z \subseteq Z^*(G)$,
- (iii) the natural map $M(G) \to M(G/Z)$ is injective.

In the following theorem, the Schur multiplier and covering group of a finite perfect group is stated.

Theorem 20: [11] If G is a finite perfect group and $G \cong F/R$, where F is a free group. Then

(i) F'/[F,R] is a covering group of G and the central extension

$$1 \to (F' \cap R)/[F,R] \to F'/[F,R] \to G \to 1$$

is universal.

(ii) If $1 \to A \to G^* \to G \to 1$ is a universal central extension, then $A \cong M(G)$ and G^* is a covering group of G.

Steinberg [16] obtained an universal central extension for $PSL_n(F_q)$ and $PSp_{2n}(F_q)$ in the following theorem.

Theorem 21: [16] If q is finite, $|F_q| > 4$ and $SL_2(F_9)$ is excluded, then the natural extension

- (i) $1 \to Z(SL_n(F_q)) \to SL_n(F_q) \to PSL_n(F_q) \to 1$ is universal.
- $\begin{array}{c} (ii) \ 1 \rightarrow \{\pm I\} \rightarrow Sp_{2n}(F_q) \rightarrow PSp_{2n}(F_q) \rightarrow 1 \ \text{is universal.} \\ \text{Huppert and Hannebauer [15, 17] obtained the following well-known facts concerning the Schur multiplier in the following theorem.} \end{array}$

Theorem 22: [15, 17]

- (i) $M(SL_2(F_q)) = 1$.
- $(ii) M(GL_2(F_q)) = 1.$
- (iii) If $q \neq 2^n$, then $M(PSL_2(F_q)) = \mathbb{Z}_2$.
- (iv) If $q \neq 2^n$, then $M(PGL_2(F_q)) = \mathbb{Z}_2$.

References

- [1] R. K. Dennis, "In search of new homology functors having a close relationship to K-theory," *Preprint, Cornell University, Ithaca. NY*, vol. 49, pp. 737–759, 1976.
- [2] R. Brown and J. L. Loday, "Excision homotopique en basse dimension," C. R. Acad. Sci. Paris S'er. I Math, vol. 298, pp. 353–356, 1984.
- [3] ——, "Van kampen theorems for diagrams of spaces," *Topology*, vol. 26, pp. 311–335, 1987.
 [4] J. R. Beuerle, "Metacyclic groups and their non-
- [4] J. R. Beuerle, "Metacyclic groups and their nonabelian tensor squares," Ph.D. dissertation, Department of Mathematics, State University of New York at Binghamton, 1999.
- [5] R. D. Blyth and R. F. Morse, "Computing the non-abelian tensor square of polycyclic groups," *J. Algebra*, vol. 321, pp. 2139–2148, 2009.
- [6] R. D. Blyth, F. Fumagalli, and M. Morigi, "Some structural results on the nonabelian tensor square of groups," *Journal of Group Theory*, vol. 13, pp. 83–94, 2010.
- [7] G. Ellis, "Tensor products and *q*-crossed modules," *J. Lond. Math. Soc*, vol. 51, pp. 243–258, 1995.
- [8] F. R. Beyl, U. Felgner, and P. Schmid, "On groups occuring as center factor groups," *J. Algebra*, vol. 61, pp. 161–177, 1979.
- [9] T. W. Hungerford, *Algebra*. New York: Springer-Verlag, 1974.
- [10] D. J. S. Robinson, A course in the theory of groups. Berlin: Springer-Verlag, 1982.
- [11] G. Karpilovsky, The Schur multiplier. Oxford: Clarendon Press, 1987.
- [12] U. Stammbach, Homology in Group Theory, Lecture Notes in Mathematics, Vol. 359. Berlin: Springer, 1973
- [13] M. Quick, "MT5824 Topics in groups lecture notes," 2004-2009, university of St Andrews.
- [14] A. E. Western, "Groups of order p^3q ," *Proc. London Math. Soc*, vol. 30, pp. 209–263, 1899.
- [15] B. Huppert, *Endliche Gruppen*. Berlin: Springer-Verlag, 1967.
- [16] R. Steinberg, "Lectures on chevalley groups," 1968, mimeographed lecture notes, Yale University Notes, New Haven.
- [17] T. Hannebauer, "On nonabelian tensor square of linear groups," *Arch. Math*, vol. 55, pp. 30–34, 1990.