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Abstract: The computations of the mechanical properties of the
pure metals Cu, Ag and their alloys AgCu3 and CuAg3 are
presented using the Modified Embedded Atom Method Second
Nearest-Neighbour (MEAM-2NN) and Sutton-Chen (SC) mathe-
matical models. These inter-atomic potentials are frequently used
to model the energy of atomic interactions in metals and their al-
loys. The comparison is made to see how well these semi-empirical
atomic potentials perform in terms of computing mechanical prop-
erties and the dynamic memory needed by the models. The result
of our work could be used as a reference point in selecting semi-
empirical potentials to model mechanical properties of metals and
their alloys. The general utility lattice program (GULP) was used
to model the mechanical characteristics of the metals [1]. The time
taken to complete the simulations using Sutton-Chen (SC) poten-
tial is much lower than when using MEAM-2NN model. The val-
ues of the mechanical properties of the pure metals Cu and Ag ob-
tained using the MEAM-2NN are much closer to the experimental
values than the values obtained using SC potential. The peak dy-
namic memory used while using MEAM-2NN inter-atomic poten-
tial is much higher than when SC model is utilized in the simulation
process1.

Keywords: Inter-atomic potential, dynamic memory, elastic con-
stant, elastic modulus, acoustic velocity.

1. INTRODUCTION
The force field or interatomic potential is at the heart of atom-
istic simulations like Geometry Optimization, Molecular Dy-
namics (MD), or Monte Carlo. They specify how atoms inter-
act in a system, and the correctness of the results is dependent
on which potentials are chosen to model the energy of atomic
interactions. It is necessary to select appropriate interatomic
semi-empirical potentials in order to mimic the desired at-
tributes of the materials under inquiry. There are a number of
interatomic potentials that can be used to model the energy
of atomic interactions in metals and their alloys. The chal-
lenging task is how to choose the potential that represent the
interactions among the atoms constituting the material with
reasonable precision. The MEAM − 2NN and the Sutton-
Chen semi-empirical potentials are some of the frequently
used models in simulation of metals and their alloys. It is
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self-evident that one interatomic model may be better at fore-
casting some attributes while the other method is better at cal-
culating other material properties. It’s also worth mentioning
that the models’ performance may be element-dependent. To
evaluate the advantages of one model over the other, a com-
parison of the methods for forecasting the desired properties
of the materials is required.

Because of the widespread availability of computer com-
puting capabilities, scientists and industry specialists have
been able to develop higher-performance materials that can
be used in chemical industries and as low-weight, high-
strength structural materials [2]. The composites of Cu−Ag
alloys find wide range applications in electricity due to their
high strength and electrical conductivity [3].

Here, we simulated Cu, AgCu3, CuAg3 and Ag using
the two semi-empirical interatomic potentials. The purpose
of these simulations is to compare the performance of the po-
tentials in predicting the mechanical properties such as elastic
constants, bulk and shear moduli, and acoustic velocities of
the metals and their alloys. The study’s findings will reveal
the relative advantages of each interatomic potential. This
will aid in the selection of mathematical models for the en-
ergy of atomic interactions in metals and alloys.

2. MATHEMATICAL MODELS
One of the challenges in computer simulation methods is the
task of finding inter-atomic potential that accurately mod-
els the interaction among the atoms that constitute the ma-
terial [4]. The commonly used potentials for modeling
atomic interaction in face centered metals and alloys are the
Sutton-Chen interatomic potential and the Modified Embed-
ded Atom Method (MEAM).

The total potential energy of interatomic interactions in the
framework of the Sutton-Chen model is expressed as follows
[5]:
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where the first term in equation (1) represents a pairwise
long-range van der Walls interaction between the i and j
atomic cores separated by a distance rij . The second term in-
troduces the many body cohesive term in relation to the atom
i while the square root term describes a many body compo-
nent into the energy summation. In equation (1), rij is the
separation distance between the atoms i and j, a is a lattice
parameter with dimension of length, c > 0 is a dimension-
less parameter that scales the cohesive term in relation to the
repulsive term, ϵ is a energy parameter, n and m are integer
material parameters with the property n > m. The SC poten-
tial could be extended to model alloys using the combination
rules for the parameters [5]:

ϵij = √
ϵiϵj ,aij = ai +aj

2 ,

mij = mi +mj

2 ,nij = ni +nj

2 .
(2)

Table 1. The parameters of the Sutton-Chen potential for the
metals Cu and Ag [6].

Metal m n ϵ (eV) c a (Å)
Cu 6 9 1.2382 ×10−2 39.432 3.6100
Ag 6 12 2.5415 ×10−3 144. 41 4.0900

The modified embedded atom method (MEAM) potential
was written in such away that it would describe metals and
materials with covalent bonds having one function expres-
sion [7, 8]. This potential models well interatomic interac-
tions in metallic crystals with face centred cubic(fcc), body
centred cubic (bcc) and hexagonal close packed (hcp) struc-
tures. In the original formalism of MEAM, only the inter-
actions of the first nearest neighbours denote as 1NN were
taken into considerations [9]. This was extended to include
the second nearest neighbour (2NN) interactions by Lee and
Baskes [10].

In the MEAM mathematical formalism the total energy of
the system is given as [11]:

Etot =
∑

i

[
Fi(ρ̄i)+ 1

2
∑
i ̸=j

Sijϕij(Rij)
]
, (3)

where Fi is the embedding function, ρ̄i is the background
electron density at site i, Sij is a multi-body screening factor
and ϕij(Rij) is the pair interaction between atoms i and j at
a distance Rij . The embedding function Fi is expressed as
follows [11]:

F (ρ̄) = AEc

(
ρ̄

ρ̄0

)
ln
(

ρ̄

ρ̄0

)
, (4)

where A is an adjustable parameter, Ec is the sublimation en-
ergy and ρ̄0 is the background electron density for a reference
structure. The detailed descriptions of the MEAM-1NN and
MEAM-2NN can be found [12].

3. MECHANICAL PROPERTIES OF THE
METALS

For a general 3-D material there are six components of stress
and a corresponding six components of strain. Applying
Hooke’s law, the relation between stress and strain is ex-
pressed as [13]:

σi = Cijϵj , (5)

where C is elastic constant, σ is stress and ϵ is strain. For
evaluating elastic constants, GULP has the computing re-
sources. Atomic coordinates determine the potential energy.
Elastic constants are obtained by taking the second derivative
of the potential energy function in terms of strain [1]:

Cij = 1
V

∂2U

∂ϵi∂ϵj
, (6)

where Cij is a component of the stiffness matrix C, U is the
energy expression, V is the volume of the unit cell, ϵi and ϵj

are strain. For fcc cubic crystals the only unique elements are
the elastic constants C11, C12 and C44. In terms of the inter-
atomic potentials, the equation used to compute the values
for these independent elastic constants can be expressed as
follows [14]:
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For isotropic polycrystalline materials, the bulk modulus
(B) and shear modulus (G) can be estimated from elastic
constants Cij [15]. In computer simulations, the bulk and
shear moduli are computed from elastic constants. One of
the most widely used methods to estimate the elastic charac-
teristics of polycrystalline materials is the averaging of the
single crystal elastic moduli, known as the Voigt (V), Reuss
(R) and Hill (H)[15]. Hill showed that the Voigt approxima-
tion leads to overestimated values of the elastic moduli, while
the Reuss approximation underestimated the values [16], and
recommended to take the arithmetic mean of value of these
approximations[17]. The formulas for estimation of bulk and
shear moduli due to the Voigt(V) and Ruess (R) approxima-
tions are given as follows:

BV = BR = 1
3(C11 +2C12); (8)

GV = 1
5(C11 −C12 +3C44); (9)

GR = 5C44(C11 −C12)
4C44 +3(C −11−C12) . (10)

The bulk and shear moduli of metals and alloys were calcu-
lated using the Hill(H) approximations. For fcc crystal struc-
tures, BH = BV = BR, whereas the Hill’s approximation
value for shear modulus is computed using the formula be-
low [15]:
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GH = GV +GR

2 . (11)

Acoustic velocity, often known as sound speed, is the rate
at which a tiny disturbance propagates across a specific mate-
rial medium. Acoustic velocity measurements provide infor-
mation on the properties of both artificial and natural materi-
als. They’re crucial when it comes to understanding seismic
data [18]. Many fundamental solid-state parameters, such as
acoustic velocity, thermal conductivity, Debye temperature
and so on, are strongly related to elastic properties [19]. The
average acoustic velocity (Vm) in polycrystalline materials is
linked to the fundamental material parameter Debye temper-
ature and is calculated as follows [20]:

Vm =
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(12)

where the material’s transverse and longitudinal velocities
are Vt and Vl, respectively. These values are calculated us-
ing the formulas below, which are based on the bulk, shear
moduli, and density (ρ) values of metals and alloys [21]:

vt =
(

GH

ρ

)1/2

and vl =
(

3B +4GH

3ρ

)1/2

. (13)

4. SIMULATION OF THE MECHANICAL
PROPERTIES

GULP was used to run the simulation in this case. General
Utility Lattice Program (GULP) is an acronym for general
utility lattice program. This computer code can run simula-
tions in a range of dimensions, from 0-D (molecules and clus-
ters) to 3-D (periodic solids), both with and without boundary
conditions [1].

The metals Cu and Ag have face centred cubic (fcc) [22]
while the alloys CuAg3 and AgCu3 have L12 (see Figure 1)
[2] crystal structure.

Figure 1. L12 crystal lattice structure

The coordinates of the atoms utilized in simulation
are built using the unit cell, which is the most ba-
sic elementary cell. For example, the unit cell for
the alloy AgCu3 has the following basis vectors: Ag:
a(0.0,0.0,0.0); Cu: a(0.5,0.5,0.0); Cu: a(0.0,0.5,0.5);

and Cu: a(0.5,0.0,0.5). Here a is the edge of an elemen-
tary cube. By translating the unit cell in three dimensions, a
cube of 27 unit cells (3 × 3 × 3 = 27) containing 108 atoms
was created.

The simulations were run with the number of particles (N)
and pressure (P) remaining constant. Periodic boundary con-
ditions were used in all the simulations. The simulation was
conducted at 0 Kelvin and pressure of 0 GPa.

5. RESULTS AND DISCUSSION
The metals and their alloys were simulated using the GULP
simulation code 5.1. For each sample the simulation was
done first using the MEAM-2NN and then Sutton-Chen
inter-atomic potential. The Newton-Raphson optimiser with
BFGS hessian updater [1] was used in the optimization pro-
cess. For optimized structure the elastic constants and bulk
and shear moduli were calculated. The results of our com-
putations are presented in Table 2 and on figures 2–3. The
the values recorded under the time column in table 2 corre-
sponds to the time taken by the central processing unit (CPU)
of the computer to complete the simulation in seconds while
the values given under PDM correspond to the peak dynamic
memory of the computer used in the simulation process. The
experimental values in Table 2 are obtained from different
articles in the literature.

The comparison of the CPU computational time taken to
complete the simulation for each metal or alloy using the
MEAM-2NN and Sutton-Chen potential is shown in figure
2. The time taken by MEAN-2NN is a little less than twice
the time taken by the SC potential to complete the task.
The value of CPU time by MEAM-2NN falls in the interval
1.79 × SCtime < MEAM − 2NNtime < 1.88 × SCtime.
Here SCtime refers to CPU time taken when using Sutton-
Chen potential in the simulation while MEAM −2NNtime

corresponds to the CPU time taken when MEAM-2NN is
used in the simulation. Computations using SC potential are
fast and this can be attributed to it’s simple mathematical for-
malism.
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Figure 2. Comparison CPU time in computing Mechanical
Properties of the materials using the MEAM-2NN and Sutton-Chen

(SC) Potentials.
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Table 2. Mechanical properties of the alloy system Cu − Ag using MEAM-2NN and Sutton-Chen (SC) potentials. The Exp. value for each
row corresponds to the experimental value. C11, C12, C44, B and G in GPa, time in seconds, peak dynamic memory(PDM) in MB,

acoustic velocities(Vt and Vl) in km/s and a in Å.

Metal Potential a C11 C12 C44 B G Time PDM Vt Vl

Cu meam-2NN 3.613 176.14 124.91 81.77 141.99 51.44 409.89 8.30 2.40 4.85
SC 3.611 168.70 129.43 58.17 142.52 37.67 227.88 3.05 2.04 4.64

Exp. 3.61a 176.22b 124.96b 81.70b 142.026a 48c 2.337f 4.798f

AgCu3 meam-2NN 3.750 194.20 129.77 88.59 151.25 59.07 434.17 8.16 2.51 4.95
SC 3.830 157.70 112.22 60.99 127.38 41.07 231.15 3.22 2.15 4.54

CuAg3 meam-2NN 3.960 155.14 110.40 64.45 125.31 42.20 376.32 7.23 2.02 4.19
SC 4.1504 121.04 83.18 50.14 95.80 33.94 203.55 3.22 1.94 3.96

Ag meam-2NN 4.073 131.45 97.31 51.08 108.69 32.95 362.10 7.07 1.76 3.79
SC 4.280 106.65 72.94 44.88 84.17 30.31 195.63 3.05 1.82 3.69

Exp. 4.079e 131.36b 97.72b 51.26b 103.8d 30c 1.730f 3.770f

a = Ref[15], b = Ref[23], c = Ref[24], d = Ref[25], e = Ref[26], f = Ref[27]

The values of the elastic constants C11, C12, C44 and the
bulk modulus (B) computed using the MEAM-2NN potential
for the pure metals Cu and Ag are approximately equal to
their respective experimental values where as shear modulus
is higher by approximately 3 units.

The value of the elastic constants for Cu computed using
the SC potential differ approximately for C11 by 8 units, C12
by 5 units and C44 by 23 units while the value for the bulk
modulus is approximately equal to the experimental value.
Similarly for Ag, the values are approximately less than the
experimental ones for C11 and C12 by 25 units and for C44
by 7 units while the value for the bulk modulus is approx-
imately less than the experimental value by 24 units. The
value of the shear modulus is approximately equal to the
value from experiment.

The mechanical properties for the alloys were not com-
pared due to lack of experimental data. Generally, the values
obtained using the MEAM-2NN are closer to the experimen-
tal values when compared for those computed using SC po-
tential. In addition the values of the lattice parameter by both
potentials for Cu are approximately equal to the experimental
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Figure 3. Comparison of the Mechanical Properties of Ag using
the MEAM-2NN and Sutton-Chen (SC) Potentials
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Figure 4. Comparison of the Mechanical Properties of Cu using
the MEAM-2NN and Sutton-Chen (SC) Potentials

value. The lattice parameter value for the pure metal Ag by
the MEAM-2NN is approximately equal to the experimental
value while the result obtained using SC is a little higher than
the experimental value.

The peak dynamic computer memory used in the simula-
tion of the alloys system Cu − Ag when the MEAN-2NN
interatomic potential used is on average higher by 245% in
comparison to the Sutton-Chen model. The acoustic veloci-
ties computed using the two models for both metals are close
to experimental values. In general terms, the results using
MEAM-2NN model are very close to the experimental val-
ues while when the SC interatomic potential is used the re-
sults are not close to experimental values except for the bulk
modulus for Cu and shear modulus for Ag. Generally, the SC
method did a poor job in approximating the mechanical prop-
erties for Ag in comparison with the MEAM-2NN model.

6. Conclusion
We present a comparative study of mechanical properties
of Cu, Ag, AgCu3 and CuAg3 using MEAM-2NN and
Sutton-Chen mathematical models. Although these semi-
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empirical methods are based on classical laws, the simulation
results show that the estimated mechanical properties using
the methods are very close to experimental values.

The MEAM-2NN method approximates very well the elas-
tic constants C11, C12 and C44 for pure metals Cu and Ag.
In fact, the results are approximately equal to the experimen-
tal values. The same can be concluded about the bulk modu-
lus for the metals Cu and Ag while the value for shear modu-
lus is higher by approximately 3 units from the experimental
values. The results obtained using SC potential for the elastic
constants and shear modulus are less accurate in comparison
with the values obtained using MEAM-2NN. The SC poten-
tial approximates very well the bulk modulus for the metal
Cu which is approximately equal to the experimental value.
The elastic constants and moduli of Ag were poorly approx-
imated by the SC mathematical model. For both pure met-
als, the MEAM interatomic potential is a significantly better
model for approximating transverse and longitudinal acous-
tic velocities. Hence the MEAM-2NN is a much better model
to simulate the mechanical properties of the pure metals Cu
and Ag in terms of the closeness the obtained results to the
experimental values. The case could be similar with alloys of
Cu and Ag but our comparison was hindered due to the lack
of experimental data on mechanical properties of the alloys.

The MEAM-2NN model has a substantially greater peak
dynamic memory usage than the Sutton-Chen mathematical
model. MEAM-2NN simulation is slower than SC poten-
tial. MEAM-2NN takes about twice as long as SC potential
to run a simulation. The complexity and simplicity of their
mathematical formalisms, respectively, could explain the rel-
ative speed difference in completing the task of simulation.
Furthermore, the MEAM-2NN technique takes into account
atoms up to their second closest neighbours. For small metal
and alloy systems, the MEAM-2NN model may be superior,
however the SC mathematical model may be preferable for
complex and larger metal and alloy systems.
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