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Abstract: Malaria is a life-threatening disease caused by Plasmod-
ium falciparum that are transmitted to people through the bite of
infected female Anopheles mosquitoes. Liver-stage treatment is the
removal of dormant sporozoites from the liver by adhering to pro-
phylactic measures. Several malaria control measures have been
recommended by World Health Organization (WHO), but this is
threatened by untreated liver-stage infection, which the existing lit-
erature did not consider. A new system of differential equations
that capture untreated liver-stage infection is formulated to describe
the dynamics of malaria transmission between two interacting pop-
ulations. Hospitalized infectious human is also incorporated in the
model. The existence of solutions is established and the basic repro-
duction number, Ro, is calculated. Local stability of disease-free
and endemic equilibrium solution are established. Suitable Lya-
punov function is constructed to analyze the global dynamics of the
system. Moreover, sensitivity analysis of the model parameters is
carried out. The sensitivity analysis reveals the important parame-
ters needed to propose intervention strategies.

Keywords: Malaria, prophylactic measures, Lyapunov function,
sensitivity analysis.

1. Introduction
Malaria is caused by protozoan parasites of the genius Plas-
modium parasites. The parasites are spread to people through
the bites of infected female Anopheles mosquitoes. There
are five plasmodium parasite species that cause malaria in
humans, and two of these species-P.falciparum and P.vivax,
pose the greatest threat. Malaria is endemic to tropical areas
where the climatic and weather conditions allow continuous
breeding of the mosquito. Malaria is one of the most im-
portant parasitic and infectious diseases especially in tropical
and subtropical areas. Malaria, affecting mainly children and
pregnant women is one of the greatest menaces in our soci-
ety in terms of morbidity and mortality and the occurrence
of malaria in our part of the world correlates with poverty
and ignorance [1]. In 2017, there were estimated 219 million
cases of malaria in 87 countries and the estimated number of
malaria deaths stood at 435000 in the same year [2].

The amount of time between the mosquito bite and the ap-
pearance of symptoms varies depending on the strain of para-
site involved. The incubation period is usually between eight
to twelve days of falciparum malaria, but it can be as long as
a month for the other types. Symptoms of malaria include fa-
tigue, severe headache, nausea, and fever. In many cases, this

cycle of fever occurs every other day and may last between a
week and a month. Those with the chronic form of malaria
may have a relapse as long as fifty years after the initial infec-
tion ([3, 4]). Malaria falciparum is a medical emergency that
should be treated in the hospital. The type of drug, method
of administration and length of the treatment depend on the
level of sickness of the patient. The treatment malaria is usu-
ally artemicinin-based combination therapies (ACTs) ([3, 5]).

Mathematical models have been used before in the study
of transmission dynamics and spread of malaria. See ([2, 6–
17]) and the references therein. Budhwar et al. [9] presented
a mathematical model of malaria incorporating infective im-
migrants in the human population. They calculated the ba-
sic reproduction number, Ro, using the next generation ma-
trix method. Moreover, they discussed about the stability of
the equilibrium points. They used the Lyapunov function to
show the global stability of the equilibrium points. Bakare
et al [17] developed a population level mathematical model
for human-mosquito interactions with multiple interventions
towards the elimination of plasmodium falciparum malaria in
Nigeria. They carried out sensitivity analysis on the model.
They applied intervention, which focused on mosquito bit-
ing rate and the human recovery rate to reduce the spread
of malaria in low and high transmission regions in Nige-
ria. Olaniyi et al [7] formulated a malaria model with nat-
urally acquired translent immunity in the presence of pro-
tected travellers. They established the qualitative analysis of
their model, which reveals the existence of backward bifur-
cation. Their analytical results further reveals that increased
fraction of protected travellers is shown to reduce the basic
reproduction significantly. Furthermore, they employed op-
timal control theory to analyse the non-autonomous model,
which takes into account four control variables. They illus-
trated the effects of combining at least any three of the con-
trol variables on the malaria dynamics. Lastly, they carried
out cost-effectiveness analysis which shows that the com-
bination of the optimal use of personal protection using in-
secticides, mosquito reduction effort using indoor residual
spray and prophylaxis are the most cost-effective strategy
of all the various combination of the control that are con-
sidered in their work. In another development, Kotou et
al.[18] analysed a mathematical model of malaria transmis-
sion, taking into account the immature stages of the vec-
tors. They applied Lyapunov Principle to study the stability
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of equilibrium points. They determined the basic reproduc-
tion number using next generation matrix and investigated
its implication for malaria management. They showed that
the mosquito population disappears if the threshold dynam-
ics quantities are less than unity. But if they are greater than
unity, mosquito population persists and malaria also. They fi-
nally carried out numerical simulations to support their math-
ematical results.Okuneye et al. [19] developed a weather-
driven malaria transmission model considering temperature-
dependent Anopheles Plasmodium gonotrophic and sporogo-
nic cycles. They explored the effect of incorporating diurnal
temperature variations upon transmission. Analysis of their
model showed that the non-trivial disease-free equilibrium is
locally asymptotically stable when R0 < 1. They carried out
numerical simulations of their model, which suggested a non-
linear hyperbolic relationship between the reproduction num-
ber and clinical malaria burden. They finally concluded that
including the stages of the Anopheles gonotrophic cycle is
minimal important while modeling the stages of plasmodium
sporogonic cycle. Wedajo et al. [20] presented a determin-
istic mathematical model for the spread of malaria in human
and mosquito population where treatment compartment is in-
corporated. Formular for the basic reproduction number, R0,
is established. They established the stability analysis of the
disease-free equilibrium using Routh-Hurwitz stability crite-
ria. Finally, they supported their analytical work with numer-
ical simulations.

This article presents a mathematical model of malaria in-
corporating untreated liver-stage human compartment into
the human population. This is a crucial stage where atten-
tion should be more focused because the untreated liver-stage
human cannot yet infect a susceptible mosquito. Therefore,
eradication of malaria at this stage prevents the occurrence of
symptomatic stage of the infection. Consequently, we inves-
tigate the impact of untreated liver-stage humans on transmis-
sion dynamic of malaria. Theoretically, we give conditions
for the existence of solution and analyze stability of disease-
free equilibrium solution of the model. Moreover, sensitivity
analysis of the model is also carried out.

This paper is organised as follows: in section 2, the vari-
ables and parameters are defined and the model is formulated.
In section 3, the existence of solution of the model equations
as well as basic reproduction number is established. In sec-
tion 4, stability analysis is carried out. In section 5, sensitivity
analysis of the model results are presented and in section 6,
discussion and conclusion are made.

2. Model Formulation
In this section, a mathematical model for the transmission
dynamics of malaria with untreated liver-stage humans, is
formulated. A compartmental model is used in which in-
dividuals move between susceptible, untreated liver-stage,
infectious, hospitalized and recovered classes in the human
population and between susceptible, exposed and infectious
classes in the mosquito vector population respectively.

The interaction of humans and infected mosquitoes is de-
noted by β1β2SHIV while β1θSV IH denotes the rate at

which the susceptible mosquitoes are infected by infectious
human hosts. We let εβ1β2SHIV be the fraction of the liver-
stage humans who are not treated and (1− ε)β1β2SHIV be
the remaining fraction of liver-stage humans who are treated.
α is the progression rate of untreated liver-stage humans to
infectious human compartment.

Definitions of Variables
SH(t): The number of susceptible human hosts at time
t

LUH(t): The number of untreated liver-stage human
hosts at time t

IH(t): The number of infectious human hosts at time t

IP (t): The number of hospitalized human hosts at time
t

RH(t): The number of recovered human hosts at time
t

SV (t): The number of susceptible mosquito vectors at
time t

EV (t): The number of exposed mosquito vector at
time t

IV (t): The number of infectious mosquito vectors at
time t

2.1 Assumptions of the Model
The following assumptions were made in order to formulate
the equations of the model:

(a) Fraction of liver-stage humans who are not treated
progress to infectious human compartment

(b) All newborns are susceptible to infection

(c) Infectious humans progress to recovered human com-
partment when treated

(d) Infectious humans only recover from malaria through
treatment

(e) Fraction of liver-stage humans who are treated
progress to recovered human compartment.

(f) Total human population is not constant

(g) Infectious humans are hospitalized at the rate κ
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Table 1. Summary of the parameters

Parameter Meaning Value Reference
µh Natural human death rate of human (0.0000548/day)−1 [7]
ε Fraction of untreated liver-stage humans who are not treated 0.5 day−1 [Assumed]
Λh Recruitment rate of humans 0.00011 [21]
β1 Average daily biting rate by a single mosquito 0.00008 day−1 Assumed
β2 Probability that a bite infects a susceptible mosquito 0.3day−1 [7]
ρ1 Recovery rate of infectious humans 0.0022 day−1 [22]
ρ2 Recovery rate of hospitalized humans 0.0022 day−1 [22]
δ1 Malaria induced-death rate for IH 0.333 day−1 [18]
δ2 Malaria induced-death rate for IP 0.333 day−1 [18]
κ Hospitalization rate 0.05 Assumed
Λv Recruitment rate of mosquitoes 0.071 day−1 [21]
µv Natural death rate of mosquito vector 0.00004 day−1 [8]
θ Probability that a susceptible mosquito becomes infected 0.0083 day−1 [23]
β3 Progression rate from EV to IV 1

18 [24]
α Progression rate from EH to IH 1

17 [24]

The dynamics of the transmission is represented by the fol-
lowing system of ordinary differential equations:

dSH
dt

= Λh−β1β2SHIV −µhSH , (1)

dLUH
dt

= εβ1β2SHIV − (α+µh)LUH , (2)

dIH
dt

= αLUH − (ρ1 +κ+ δ1 +µh)IH , (3)

dIP
dt

= κIH − (ρ2 + δ2 +µh)IP , (4)

dRH
dt

= ρ1IH +ρ2IP −µhRH , (5)

dSV
dt

= Λv−β1θSV IH −µvSV , (6)

dEV
dt

= β1θSV IH − (β2 +µv)EV , (7)

dIV
dt

= β2EV −µvIV . (8)

With initial conditions

S(0) = So > 0, LUH(0) = L0
UH(0)> 0,

IH(0) = IoH(0)> 0, IP (0) = IoP (0)> 0,
RH(0) =RoH > 0, SV (0) = SoV > 0,
SV (0) = SoV > 0, IV (0) = IoV > 0

2.2 Basic Properties of the Model
For the malaria model to be epidemiologically meaningful, it
is important to prove that all state variables are non-negative
at all times. That is, solutions of the model Eq. (1)-Eq. (8)
with non-negative initial conditions or data, remain non-
negative for all time t > 0.
Theorem 1: Let the initial data be
(SH(0),LUH(0), IH0, IP (0),RH(0),SV (0),EV (0), IV (0))∈
Γ, then the solution set SH(t), LUH(t), IH(t), IP (t),
RH(t), SV (t), EV (t), IV (t) of the model Eq. (1)-Eq. (8) is
positive for all t > 0.

Proof: The first equation of the model Eq. (1)-Eq. (8) gives

dSH
dt

+β1β2SHIV +µhSH ≥ 0

d

dt
[SHexp

∫ t

0
β1β2(s)ds+µht]≥ 0

This implies that

SH ≥ SH(0)exp−(
∫ t

0
β1β2(s)ds+µht) > 0, for all t > 0

The same argument can be used to prove that the remain-
ing state variables, LUH ;IH ;IP ;RH ;SV ;EV ;IV are non-
negative for all time t > 0.

Eq. (1)-Eq. (3) are independent of the states IP and RH
and after decoupling the equations for IP and RH from the
model, we have the remaining equations of the model below

dSH
dt

= Λh−β1β2SHIV −µhSH , (9)

dLUH
dt

= εβ1β2SHIV − (α+µh)LUH , (10)

dIH
dt

= αLUH − (ρ1 +κ+ δ1 +µh)IH , (11)

dSV
dt

= Λv−β1θSV −µvSV , (12)

dEV
dt

= β1θSV IH − (β2 +µv)EV , (13)

dIV
dt

= β2EV −µvIV . (14)

2.3 Basic Reproduction Number
The computation of the basic reproduction number R0 is
needed in order to assess the global stability of disease-free
equilibrium. This is obtained by expressing Eq. (1)-Eq. (8) as
the difference between the rate of new infection in each in-
fected compartment F and the rate of transfer between each
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infected compartment G. Hence, we have



dLUH
dt
dIH
dt
dEV
dt
dIV
dt


=F −G

=


εβ1β2SHIV

0
β1θSV IH

0

−


m1LUH
−αLUH +m2IH

(β3 +µv)EV
−β3EV +µvIV


The Jacobian matrices JF and JG of F and G are found
about E0.

S =JFJ−1
G

=


0 0 0 0

0 0 β1θΛv
µv(β3 +µv)

β1θΛvβ3
µ2
v(β3 +µv)

0 0 0 0
εβ1β2Λh
µhm1

εβ1β2Λhα
µhm1m2

0 0


R0 is the maximum eigenvalue of S given as

R0 =

√
β2

1β2Λhθβ3Λvαε
m1m2µhµ2

v(β3 +µv)

where

m1 = α+µh

m2 = ρ1 = κ+ δ1 +µh

and

m3 = ρ2 + δ2 +µh

3. Stability Analysis

The stability analyses of both the disease-free and endemic
equilibrium points are investigated in what follows

3.1 Global Stability of the disease-free equilibrium

Theorem 2: The disease-free equilibrium E0 of the model
is globally asymptotically stable in Γ if R0 < 1 and unstable
if R0 > 1.

Proof: Consider the Lyapunov function L= α

m1m2
LUH +

1
m2

IH + µvR0
β1θΛv

EV + µv(β3 +µv)R0
β1θβ3Λv

IV . Its time deriva-

tive is

L̇= α

m1m2
(εβ1β2SHIV −m1LUH) + 1

m2
(αLUH −m2IH)

+ µvR0
β1θΛv

(β1θSV IH − (β3 +µv)EV )

+ µv(β3 +µv)R0
β1θβ3Λv

(β3EV −µvIV )

L̇=β1αερSHIV
r1r2

−CH −
µvRcSV CH

ωv
− µ

2
v(β2 +µv)RcIV

αηβ2ωv

L̇=
[
αεβ1β2SH
m1m2

− µ
2
v(β3 +µv)R0
β1θβ3Λv

]
IV +

(
µvR0SV

Λv
−1
)
IH

≤

√αεβ2λhµ
2
v(β3 +µv)

m1m2θβ3Λv
(R0−1)

IV + (R0−1)IH

≤

√αεβ2Λhµ2
v(β3 +µv)

m1m2θβ3Λv
.IV + IH

(R0−1)

Therefore, L̇ ≤ 0 for R0 ≤ 1 for L̇ = 0 if and
only if R0 = 1 or IH = 0, IP = 0 and IV =
0. Consequently, the largest compact invariant set in
{(SH ,LUH , IH , IP ,RH ,SV ,EV , IV )∈Γ : L̇= 0} is theE0
and by Lyapunov-Lasalle’s invariance principle, the disease-
free equilibrium point is globally asymptotically stable in Γ
if R0 ≤ 1 and this completes the proof.

The epidemiological implication of the above theorem is
that malaria can be eradicated irrespective of the initial sizes
of the sub-population of the model.

3.2 Global Stability of Endemic Equilibrium Point
The endemic equilibrium solution at steady state is E1 =
(S∗H ,L∗UH , I∗H ,S∗V ,E∗V , I∗V ), where

S∗H = Λh
H∗T +µh

L∗UH =
εH∗TΛh

m1(H∗T +µh)

I∗H =
αεH∗TΛh

m1m2(H∗T +µh)

S∗V = Λv
G∗T +µv

E∗V =
G∗TΛv

(β3 +µv)(G∗T +µv)

I∗V =
β3G

∗
TΛv

µv(β3 +µv)(G∗T +µv)

where the forces of infection for humans and mosquitoes at
equilibrium state are

H∗T = β1β2I
∗
V

and

G∗T = β1θI
∗
H
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Substituting I∗V , G∗T , I∗H and H∗T in H∗T = β1β2I
∗
V gives

the following linear equation:

X1H
∗
T +X2 = 0 (15)

where

X1 = β1θαεΛvµh+m1m2µhµv

and

X2 = (m1m2µhµv)µh(1−R2
0)

From Eq. (15), H∗T = −X2
X1

≤ 0 if X2 ≥ 0 at R0 ≤ 1, and

no endemic equilibrium exists. On the other hand, H∗T =
−X2
X1

> 0 if X2 < 0 at R0 > 1. Hence, an endemic equilib-

rium exists only at R0 > 1.
The theorem below summarizes the above result.

Theorem 3: The model Eq. (1)-Eq. (8) has a unique en-
demic equilibrium whenever R0 > 1, and no endemic equi-
librium otherwise.

We establish the global stability of the endemic equilib-
rium solutions of the model Eq. (1)-Eq. (8), for the case ε= 1,
hereunder.
Theorem 4: The unique endemic equilibrium E1, is glob-
ally asymptotically stable whenever R0 > 1.
Proof: We make use of Goh-Volterra type Lyapunov func-
tion [25].

Given the following equations which are satisfied by the
endemic equilibrium point E1:

Λh = β1β2S
∗
HI
∗
V +µhS

∗
H , (16)

β1β2S
∗
HI
∗
V =m1L

∗
UH , (17)

αL∗UH =m2I
∗
H , (18)

Λv = β1θS
∗
V I
∗
H +µvS

∗
V , (19)

β1θS
∗
V I
∗
H =m3E

∗
V , (20)

β3E
∗
V = µvI

∗
V . (21)

Consider the following Goh-Volterra Lyapunov function

V =
(
SH −S∗H −S∗H ln SH

S∗H

)
+
(
LUH −L∗UH −L∗UH ln LUH

L∗UH

)
+a

(
IH − I∗H − I∗H ln IH

I∗H

)
+
(
SV −S∗V −S∗V ln SV

S∗V

)
+
(
EV −E∗V −E∗V ln EV

E∗V

)
+ b

(
IV − I∗V − I∗V ln IV

I∗V

)

where a=
β1θS

∗
V

m2
and b=

β1β2S
∗
H

µv
with the Lyapunov time

derivative obtained as

V̇ =
(

1−
S∗H
SH

)
S′H +

(
1−

L∗UH
LUH

)
L′UH +a

(
1−

I∗H
IH

)
I ′H

+
(

1−
S∗V
SV

)
S′V +

(
1−

E∗V
EV

)
E′V + b

(
1−

I∗V
IV

)
I ′V

V̇ =
(

1−
S∗H
SH

)
(Λh−β1β2SHIV −µhSH)

+
(

1−
L∗UH
LUH

)
(β1β2SHIV −m1LUH)

+a

(
1−

I∗H
IH

)
(αLUH −m2IH)

+
(

1−
S∗V
SV

)
(Λv−β1θSHIV −µvSV )

+
(

1−
E∗V
EV

)
(β1θSV IH −m3EV )

+ b

(
1−

I∗V
IV

)
(β3EV −µvIV )

Using Eq. (16), we have

V̇ =
(

1−
S∗H
SH

)
(β1β2S

∗
HI
∗
V +µhS

∗
H −β1β2SHIV

−µhSH) +
(

1−
L∗UH
LUH

)
(β1β2SHIV −m1LUH)

+a

(
1−

I∗H
IH

)
(αLUH −m2IH)

+
(

1−
S∗V
SV

)
(Λv−β1θSHIV −µvSV )

+
(

1−
E∗V
EV

)
(β1θSV IH −m3EV )

+ b

(
1−

I∗V
IV

)
(β3EV −µvIV )

Ignoring some terms and further simplification gives

V̇ =β1β2S
∗
HI
∗
V +m1L

∗
UH +m3E

∗
V +am2I

∗
H

+ bµvI
∗
V −

β1β2(S∗H)2I∗V
SH

−
β1β2IV SHL

∗
UH

LUH
−
β1θ(S∗V )2I∗H

SV

−
aαLUHI

∗
H

IH
−
β1θSV IHE

∗
V

EV

−
bβ3EV I

∗
V

IV
+ 2µhS∗H −

µh(S∗H)2

SH

−µhSH −
µv(S∗V )2

SV
−µvSV + 2µvS∗V +β1θS

∗
V I
∗
H

Replacing a and b by their values and exploiting Eq. (16)-
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Eq. (21) gives

aα=
β1θI

∗
HS
∗
V

L∗UH
(22)

bβ3 =
β1β2S

∗
HI
∗
V

E∗V
(23)

Using Eq. (16)-Eq. (21) and Eq. (22)-Eq. (23), we have

V̇ =µhS∗H
(

2−
S∗H
SH
− SH
S∗H

)
+ 3β1β2S

∗
HI
∗
V

−
β1β2(S∗H)2I∗V

SH
−
β1β2SHIV L

∗
UH

LUH

−
β1θS

∗
V LUH(I∗H)2

IHL
∗
UH

+µvS
∗
V (2−

S∗V
SV
− SV
S∗V

)

+ 3β1θS
∗
V I
∗
H −

β1θ(S∗V )2I∗H
SV

−
β1θIHSV E

∗
V

EV

−
β1β2(I∗V )2EV S

∗
H

E∗V IV(
3−

S∗H
SH
−
SHE

∗
HIH

S∗HEHI
∗
H

−
EHI

∗
H

E∗HIH

)
V̇ =µhS∗H

(
2−

S∗H
SH
− SH
S∗H

)
+µvS

∗
V

(
2−

S∗V
SV
− SV
S∗V

)
+β1β2I

∗
V S
∗
H(

3−
S∗H
SH
−
SHIV L

∗
UH

S∗HI
∗
V LUH

−
θS∗V LUH(I∗H)2

L∗UHIHβ2I∗V S
∗
H

)
+β1θS

∗
V I
∗
H

(
3−

S∗V
SV
−
IHSV E

∗
V

S∗V I
∗
HEV

−
β2(I∗V )2EV S

∗
H

E∗V IV θS
∗
V I
∗
H

)
Using arithmetic-geometric means inequality, i.e., n −

(a1 + a2 + ... + an) ≤ 0, where a1.a2...an = 1 and
a1,a2, ...,an > 0, it follows that V̇ ≤ 0 with V = 0 if and
only if SH = S∗H , LUH = L∗UH , IH = I∗H , SV = S∗V ,EV =
E∗V , IV = I∗V .

Hence, the largest compact invariant subset of the set
where V̇ = 0 is

(SH ,LUH , IH ,SV ,EV , I∗V ) = (S∗H ,L∗UH , I∗H ,S∗V ,E∗V , I∗V )

and by classical stability theorem of Lyapunov and LaSalle’s
Invariance Principle, it follows that every solution in Γ ap-
proaches E1 for R0 > 1 as t→∞.

The epidemiological implication of the above result is that
malaria will establish itself whenever R0 > 1, in the popula-
tion.

4. Sensitivity Analysis
In this section, a sensitivity analysis of parameters of the
model system Eq. (1)-Eq. (6) is carried out so as to deter-
mine the relative importance of model parameters on the dis-
ease infection. The rationale is to consider and to manage
several factors responsible for malaria infections.

Sensitivity indices are computed numerically to find out
parameters that have reasonable impact on basic reproduction

number R0 and which of the parameters is most sensitive
which can help in combating the disease.

The analysis is conducted on all parameters which account
for disease dynamics using [22] approach. Sensitivity indices
is computed on the R0, which measures initial disease infec-
tion and allows us to measure relative change in a state vari-
able when a variable changes.

The normalized forward sensitivity index of a variable to a
parameter is the ratio of the relative change in the variable to
the relative change in the parameter. When the variable is a
differentiable function of the parameter, the sensitivity index
may be alternatively defined using partial derivatives.
Definition 1: The normalized forward sensitivity index of a
variable, u(p), that depends differentiably on a parameter, p,
is defined as:

Nu
p = ∂u

∂p
× p

u
for u 6= 0

Consequently, we derive analytical expression for the sen-
sitivity index of R0 as

NR0
pi

= ∂R0
∂pi
× pi
R0

where pi, i ∈ N denotes each parameter involved in R0

R0 =

√
β2

1β2Λhθβ3Λvαε
m1m2µhµ2

v(β3 +µv)

where m1 = α+µh and

m2 = ρ1 +κ+ δ1 +µh

and parameters values in Table 1. We compute sensitivity
index of each parameter with respect to the R0, for instance:

NR0
β1

=∂R0
∂β1
× β1
R0

= 1.00000

We have Table 2 which summarizes the sensitivity indices
on R0 with respect to parameters i.e

NR0
β2
,NR0

θ ,NR0
ε ,NR0

ρ1 ,N
R0
α ,NR0

δ1
,NR0

Λv
,NR0

Λh
,NR0

κ ,NR0
β3
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Table 2. Numerical values of sensitivity indices of R0 with respect
to parameter involved .

Parameter symbol Sensitivity Index
β1 +1.00000
β2 +0.50000
θ +0.50000
ε +0.50000
α1 -0.00046
ρ1 -0.00285
δ1 -0.43218
κ -0.06489

Λv +0.50000
µv -1.00035
β3 0.00035
Λh 0.50000

5. Interpretation of sensitivity Indices obtained
in Table 2

Sensitivity indices on R0 with respect to the involved param-
eters gives insights to the model system proposed. Provided
all parameters remain constant, most sensitive parameter is
β1 (Average daily biting rate by a single mosquito) being the
highest positive index. The indication is that if β1 increases,
then R0 increases by 100%. Thus, as R0 continues to be
higher, epidemic of the disease infection tends to occur.
In the same vein, sensitivity indices of β2,θ,ε,Λh show
direct variation with respect to R0. Precisely, increase in ε
(portion of liver-stage human who are not treated) increases
R0 as well as Λv ( recruitment rate of mosquitoes). On the
other angle, µh (Natural birth rate of mosquito vector) has
highest negative impact on R0, followed by δ1 (Malaria
induced-death rate of infectious human compartment),
followed by κ (rate of hospitalization) and ρ1 (recovery
rate of infectious human). It implies that increase in these
parameters will cause decrease in R0 drastically and thereby
leading to malaria infection going into extinction. These
parameters are significant in curtailing the malaria infection.
The diagram above also confirms the illustration.

6. Conclusion
A model for the transmission dynamics of malaria that cap-
tures untreated hepatic-stage humans, is formulated. The un-
treated liver-stage human compartment is introduced in order
to reduce the ignorance of people to this group (the untreated
hepatic-stage humans), as these are the group who progress to
become infectious. The disease-free equilibrium of the model
is obtained to be both locally and globally stable for Ro < 1.
It is also shown that the endemic equilibrium solution of the
model is locally stable for Ro > 1. The result from the sen-
sitivity analysis shows that increasing the value of any of the
parameters β1,β2,m,θ,ε,α increase the basic reproduction
number, Ro, and the magnitude of the infectious individuals
in the community. Most importantly, increase in ε, i.e por-
tion of the untreated liver-stage human has positive impact on
Ro. Therefore, it is necessary medically to control plasmod-

ium parasite at this stage (liver-stage) before they undergo
nuclear division where thousands of them move down to the
blood stream of humans as merozoites (blood stage) and af-
ter which they become gametocytes as the merozoites mature
sexually. This method will help to reduce the occurrence of
malaria in a population since the group can be restricted from
progressing to become infectious with adherence to prophy-
lactic measure, after being bitten by an infected mosquito.
Also increase in education r, on adherence to prophylactic
measures reduces the spread of malaria in the population. In
view of the above, liver-stage humans should be encouraged
to adhere to prophylactic measures, which will help to reduce
the spread of malaria in the population.
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