

On the Commutator Subgroups of Groups of Order 8*q*

S. Rashid¹, N. H. Sramin², A. Erfanian³ and N. M. Mohd Ali⁴

¹Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran

^{2,4}Department of Mathematics, Faculty of Science and Ibnu Sina Institute For Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

³Department of Pure Mathematics, Faculty of Mathematical Science and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran

samadrashid47@yahoo.com, nhs@utm.my, erfanian@um.ac.ir, normuhainiah@utm.my

Abstract: Let G be a group. For any $a, b \in G$, the element $a^{-1}b^{-1}ab$ is called the commutator of a and b. The commutator $a^{-1}b^{-1}ab$ is denoted by [a, b]. If A and B are subsets of G, then [A, B] denotes the subgroup of G generated by $\{[a, b] \mid a \in A, b \in B\}$. The subgroup of G generated by all the commutators in G (that is, the smallest subgroup of G containing all the commutators) is called the derived subgroup, or the commutator subgroup, of G and denoted by [G, G]. In this paper, we determine the commutator subgroup G' for groups of order g, where g is an odd prime.

Keywords: Groups of order 8q, commutator subgroup.

1. Introduction

In 1898, Miller [3] introduced the derived subgroup G' of a group G as the subgroup generated by $K(G) = \{[a, b] \mid a \in A, b \in B\}$ the set of commutators of G. According to Miller, commutators [a, b] were introduced by Dedekind a few years earlier. Commutators can act as a tool in all of group

theory. For example, commutators can be used to compute the Schur multiplier, Schur multiplier of a pair and nonabelian tensor squares of groups.

In 1899, Western [4] obtained the classication of groups of order 8q, where q is an odd prime. Western proved that there are 16 types of groups of order 8q. Miah [2] showed that a nonabelian group of order 8q is isomorphic to exactly one group of the following types.

Theorem 1.1. Let G be a nonabelian group of order 8q, where q is an odd prime. Then G is isomorphic to exactly one group of the following types.

$$\langle a,b,c \mid a^4 = b^2 = c^q = 1, bab = a^{-1}, ac = ca, bc = cb \rangle.$$

$$\langle a,b,c \mid a^4 = b^4 = c^q = 1, b^2 = a^2, b^{-1}ab = a^{-1},$$

 $ac = ca, bc = cb \rangle$

$$\langle a,b,c \mid a^4 = b^2 = c^q = 1, ab = ba, ac = ca, bcb = c^{-1} \rangle.$$

$$\langle a,b,c \mid a^4 = b^2 = c^q = 1, ab = ba, a^{-1}c = c^{-1}, bc = cb \rangle.$$

(2.10.6)

$$\langle a,b,c,d \mid a^2 = b^2 = c^2 = d^q = 1, ab = ba,$$

 $ac = ca,bc = cb,ad = da,bc = cb,cdc = d^{-1} \rangle.$

(2.10.7)

$$\langle a,b,c \mid a^4 = b^2 = c^q = 1, bab = a^{-1}, ac = ca, bcb = c^{-1} \rangle.$$

(2.10.8)

$$\langle a,b,c \mid a^4 = b^2 = c^q = 1, bab = a^{-1}, a^{-1}ca = c^{-1}, bc = cb \rangle,$$

 $q \equiv 1 \pmod{2}.$

(2.10.9)

$$\langle a,b,c \mid a^4 = b^4 = c^q = 1, b^2 = a^2, b^{-1}ab = a^{-1},$$

 $ac = ca, b^{-1}cb = c^{-1} \rangle$

(2.10.10)

$$\langle a,b \mid a^8 = b^q = 1, a^{-1}ba = c^m \rangle,$$

where m is any primitive root of

$$m^4 \equiv 1 \pmod{q}$$
 and $q \equiv 1 \pmod{4}$.

(2.10.11)

$$\langle a,b,c \mid a^4 = b^2 = c^q = 1, ab = ba, a^{-1}ca = c^m, bc = cb \rangle,$$

where m is any

primitive root of
$$m^4 \equiv 1 \pmod{q}$$
 and $q \equiv 1 \pmod{4}$.
(2.10.3) $\langle a, b \mid a^8 = b^q = 1, a^{-1}ba = b^{-1} \rangle$.

$$\langle a,b \mid a^8 = b^q = 1, a^{-1}ba = b^m \rangle,$$

where m is any primitive root of

$$m^8 \equiv 1 \pmod{q}$$
 and $q \equiv 1 \pmod{8}$.

(2.10.13)

$$\langle a,b,c,d \mid a^2 = b^2 = c^2 = d^q = 1, ab = ba,$$

 $ac = ca,bc = cb, ad = da, d^{-1}bd = c, d^{-1}cd = bc \rangle$

(2.10.14)

$$\langle a,b,c \mid a^4 = b^4 = c^3 = 1, a^2 = b^2, b^{-1}ab = a^{-1},$$

 $c^{-1}ac = b, c^{-1}bc = ab \rangle$

(2.10.15)

$$\langle a,b,c \mid a^4 = b^4 = c^3 = 1, bab = a^{-1}, c^{-1}a^2b = b,$$

 $c^{-1}bc = a^2b, a^{-1}ca = c^2a^2b \rangle$

(2.10.16)

$$\langle a,b,c,d \mid a^2 = b^2 = c^2 = d^7 = 1, ab = ba,$$

 $ac = ca, bc = cb, d^{-1}ad = b,$
 $d^{-1}bd = c, d^{-1}cd = ab \rangle. \rangle$

The commutator subgroup of order 8q is computed in the next theorem.

Main Theorem: Let G be a nonabelian group of order 8q, where q is an odd prime. Then for the commutator subgroup of G exactly one of the following holds:

$$Z_{2}; G \text{ is of type } (1.1.1) \text{ and } (1.1.2),$$

$$Z_{q}; G \text{ is of type } (1.1.3)\text{-}(1.1.6)$$

$$\text{and } (1.1.10)\text{-}(1.1.12),$$

$$Z_{2q}; G \text{ is of type } (1.1.7)\text{-}(1.1.9),$$

$$(Z_{2})^{2}; G \text{ is of type } (1.1.13),$$

$$Q_{2}; G \text{ is of type } (1.1.14),$$

$$A_{4}; G \text{ is of type } (1.1.15),$$

$$(Z_{2})^{3}; G \text{ is of type } (1.1.16).$$

2. Basic Definition and Theorems

This section includes some definitions and results on the derived subgroups of nonabelian groups.

Definition 2.1: [2] (Subgroup of *G* generated by a set)

Let G be a group and X a subset of G. Let $\{H_i \mid i \in I\}$ be the family of all subgroups of G which contains X. Then $\bigcap_{i \in I} H_i$ is called the **subgroup of G generated by the set X**, and is denoted by < X >.

Theorem 2.2: [2] Let G be a group and X a non empty subset of G. Then the subgroup < X > generated by X consists of all finite product $a_1^{n_1}a_1^{n_2}\cdots a_t^{n_t}$ ($a_i\in X$, $n_i\in Z$). In particular for every $a\in G$, $<a>=\{a^n\mid n\in Z\}$.

Definition 2.3: [2] (**Commutator subgroup**)

Let G be a group. The subgroup of G generated by the set $\{x^{-1}y^{-1}xy \mid x, y \in G\}$ is called the **commutator subgroup** of G and denoted by G'.

Let G be a group and let $G^{(i)}$ be G'. Then for $i \ge 1$, define $G^{(i)} = G^{(i-1)'}$. The notation $G^{(i)}$ is called the ith derived subgroup of G. This gives a sequence of subgroups of G, each normal in preceding one: $G > G^{(1)} > G^{(2)} > \cdots$. Actually each $G^{(i)}$ is a normal subgroup of G.

3. The Proof of Main Theorem

Let G be a nonabelian group of order 8q, where q is an odd prime. By Theorem 1.1 there are 16 types of these groups in which groups include 2, 3 or 4-generators. Since computing the commutator subgroup for all 2-generator groups is similar, G' is computed for exactly one type in this family in details. This method is the proceeded for 3, 4-generators, that is, G' is computed for groups of types (1.1.1), (1.1.3) and (1.1.6) including 3, 2 and 4-generators, respectively.

For computing the commutator subgroup for groups of type (1.1.1) by the relations $bab = a^{-1}$; ac = ca and bc = cb, every element of G can be uniquely written in the form $a^i b^j c^k$ where $0 \le i \le 3$, $0 \le j \le 1$ and $0 \le k \le q - 1$. Assume that $g = a^i b^j c^k$ and $g' = a^{i'} b^{j'} c^{k'}$ be two arbitrary elements of G. Then

Case 1: j = j' = 0.

In this case by the relations, it is clear that [g, g'] = 1.

Case 2: j = 1, j' = 0.

By the relations ac = ca and bc = cb,

$$[g, g'] = c^{-k}ba^{-i}c^{-k'}a^{-i'}a^{i}bc^{k}a^{i'}c^{k'} = a^{2i'}$$

Case 3: j = 0, j' = 1.

By similar way, $[g, g'] = a^{2i'}$.

Case 4: j = j' = 1.

In this case,

$$[g,g'] = c^{-k}ba^{-i}c^{-k'}a^{-i'}a^{i}bc^{k}a^{i'}c^{k'} = a^{2(i-i')},$$

These computations show that the commutator subgroup is isomorphic to a cyclic group of order 2.

For computing the commutator subgroup for groups of type (1.1.3) using the relations $a^{-1}ba = b^{-1}$, it is clear that every element of G can be uniquely written in the form $a^i b^j$

, where $0 \le i \le 7$, $0 \le j \le q - 1$. Let $g = a^i b^j$ and $g' = a^{i'}b^{j'}$ be two arbitrary elements of G. Then

$$[g, g'] = b^{j'} a^{i'} b^{-j'} a^{-i'} a^{i} b^{j} a^{i'} b^{j'} = b^{-2j'}$$

This computatiom shows that the commutator subgroup is isomorphic to a cyclic group of order q.

For computing the commutator subgroup for groups of type (1.1.6), note that every element of G can be uniquely written in the form $g = a^i b^j c^k d^s$ where $0 \le i, j, k \le 1$,

 $0 \le s \le q$ -1. Let $g = a^i b^j c^k d^s$ and $g' = a^{i'} b^{j'} c^{k'} d^{s'}$ be two arbitrary elements of G. Then

 $[g,g'] = d^{-s}c^{-k}b^{-j}a^{-i}d^{-s'}c^{-k'}b^{-j'}a^{-i'}a^ib^jc^kd^sa^{i'}b^{j'}c^{k'}d^{s'}$ The following cases are considered:

Case 1: k = k' = 0.

In this case by the relations, it is clear that [g, g'] = 1.

Case 2:
$$k = 1$$
, $k' = 0$.

By the relations, $[g, g'] = d^{2s'}$. Case 3: k = 0; k' = 1.

By the similar way, $[g, g'] = d^{2s'}$.

Case 4: k = k' = 1.

In this case, $[g, g'] = d^{2(s-s')}$. This computatiom shows that the commutator subgroup is isomorphic to a cyclic group of order g.

References

- [1] T. W. Hungerford, Algebra, Springer-verlag, New York, 1974.
- [2] S. H. Miah, On the Isomorphism of Group Algebras of Groups of Order 8q, J. London Math. Soc. (2) 9, 549-556, 1975.
- [3] G. Miller, On the commutator groups, *Bull. Amer. Math. Soc.*, **4**, 135-139, 1898).
- [4] A. E. Western, Groups of order *p3q*, *Proc. London Math. Soc.* **30**, 209-263, 1899.