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Abstract: A good understanding of probability distribution of annual 

maximum river flow is believed to improve water resources planning 

and design. Based on the annual maximum river flow record over 

20-48 years at 9 individual river sites in Sabah, the data set are fitted 

into generalized extreme value (GEV) distribution with maximum 

likelihood estimator. Both stationary and non-stationary models are 

considered. Likelihood ratio test shows that most of the river flows 

are stationary. Over a homogeneous region, a parent distribution 

with common shape parameter is found well describing the 

behaviour of selected annual maximum river flow. Hence, 10- and 

100-year return levels are estimated using the single model. 
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1. Introduction 

The modelling of annual maxima river flows has been the 

popular topic for long time. In Sabah, river flows are 

important for survival and country economic development. 

The population growth is putting pressure on state’s water 

resources. Poor water resources planning and management 

might bring to flood or drought due to climate change and 

even low quality of drinking water. In short, improper control 

of river flow will bring severe destroy to crops, economic loss 

and casualty. Hence, identify the behaviour of extreme river 

flows, mainly in long term trends, is of essential. A fairly 

accurate estimation of extreme flows with given return period 

will improve in decision making so that to avoid waste of 

investment or severe damage and sacrifice of life [1],[2]. 

In previous researches, annual maximum river flow was 

used as an indicator for flood trends analysis. It is believed that 

a good understanding of river flows pattern may be useful in 

reducing the negative impacts as mentioned above. The first 

step in modelling extreme value is analysing the data in the 

form of cumulative distribution and determine the best fitting 

distribution function. In annual maxima analysis, generalized 

extreme value (GEV) distribution is always suggested due to 

the advantage in allowing uncertainty to be considered, in 

particular scale parameter. Hence, a more robust prediction 

can be obtained from GEV distribution [3]-[5]. In Malaysia, 

3-p log-normal distribution and generalized Pareto 

distribution (GPD) are suggested in analysing annual 

maximum river flows at Johor [6],[7]. In this study, GEV 

distribution is employed. 

Suitable parameter estimation could reduce bias and 

uncertainty in estimates. There are several frequentist methods 

suggested in cooperating with GEV distributions such as 

maximum likelihood estimation (MLE), probability weighted 

moment (PWM) and L-moment. In hydrological events, MLE 

is often chosen which shows less bias and provides more 

consistent approach to parameter estimate [8]-[10].    

Recently, environmental scientists and statisticians start 

focus on non-stationary probability distribution in flood 

frequency analysis. Environmental process could exhibit trend 

in time [11]. Climate variability and anthropogenic activities 

such as deforestation as well as land misuse are found 

affecting on the behaviour of extreme river flows [12]. In the 

study of [13], stationary model is found underestimate in flood 

quantile relative. [14] who test the hypothesis of stationarity in 

estimating flood events, conclude that a linear trend in location 

parameter is important. The similar finding is supported by 

[15] in the study of annual maximum stream flow analysis in 

Canada. 

The objective of this study is to describe the behaviour of 

selected extreme river flows in Sabah by using a parent 

probability distribution. In particular, the annual maximum 

series data of river flow from nine sites with small sample size 

are fitted into GEV distribution with MLE as parameter 

estimation. Both stationary and non-stationary cases are 

studied. Location parameter in non-stationary model is 

accordance with time dependent. Likelihood ratio test is 

conducted to compare both models. Next, we examine the 

possible common GEV parameters between sites. Lastly, we 

obtain the return level estimate from chosen model.             

2. Research Methodology 

Extreme value theory (EVT) provides analogues of the central 

limit theorem for the extreme values in a sample, which 

normally situated in the tail distribution.  

2.1 Generalized extreme value distribution 

EVT focuses on the statistical behaviour of 

 nn XXM ,,max 1  where 
nXX ,,1  is a sequence of i.i.d. 

EVT states that, if there exits of normalising constant   0na  

and nb , G is non-degenerate distribution function such that  
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where G is a non-degenerate distribution function, then G  

belongs to one of the families of GEV distribution. The 

cumulative distribution function (cdf) of GEV distribution is 

denoted as follow: 
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Location   , scale    and shape    are the parameters in 

GEV distribution which combines Fréchet distribution  0  , 

Gumbel distribution  0  and Weibull distribution  0 .In 

EVT, GEV distribution is used to model the tail behaviour of a 

distribution where the shape parameter plays the role [16].  

2.2 Maximum likelihood estimation 

A likelihood function can be formed when the observations are 

known which gives the probability of observed data. The joint 

likelihood function of the sample follows from probability 

distribution of (2) as 
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MLE can be described by log-likelihood as  
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The parameters are estimated by solving the partial 

derivatives of the log-likelihood function and equate them to 

zero with Newton-Raphson algorithm [17].   

2.3 Model Comparison 

Likelihood ratio test is an efficient method to compare nested 

models for covariance. Suppose that Model 1 is a reduced 

model with 3-parameter and Model 2 is a full model with 

4-parameter. 

  ,,~:1 GEVXM  

   ,,~: 102 ttGEVXM   (5) 

The considered hypothesis testing is given by 

0: 10 H  

0: 1 aH  (6) 

Let 1L and 
2

L be the maximum likelihood of Model 1 and 

Model 2 respectively. The likelihood ratio test is given by 

2

1ln2
L

L
  (7) 

and distributed as  1 quantile chi-square distribution. 

The degree of freedom k is corresponding to the difference 

number of parameters between the two models. If 2
1,   k

, 

0H is not rejected.  

3. Return level estimate 

A return period is an estimate of the likelihood of an event. 

Return level pz is expected to be exceeded on average once 

every 
p

1
 periods, where p is the probability of the extreme 

event  10  p . By inverting the cdf in (2), return level 

estimates are obtained by 
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4. Results and Discussions 

4.1 Descriptive analysis 

In this study, nine river flows with small sample size 

 50n are selected for the annual maximum river flow 

analysis. The secondary data are obtained from Hydrology and 

Survey Division under Department of Irrigation and Drainage, 

Sabah. The data are collected as daily mean of 24-hour periods 

beginning at 8.00am every day. The observations are 

measured in 13 sm . Table 1 summarizes the information of the 

selected river flows in this study. The range of annual maxima 

observations used from 20 to 48 years with average 40 years. 

 

Table 1. Information of selected river flows 

Site Stations 

No. 

of 

years 

Period 
Max. 

observation 

1 

Sungai 

Apin-apin at 

Waterworks 

20 1996-2015 50.41 

2 
Sungai Baiayo at 

Bandukan 
21 1993-2013 39.94 

3 
Sungai Padas at 

JPS Beaufort 
35 1981-2015 1506.30 

4 
Sungai Sook at 

Biah 
47 1969-2015 313.99 

5 
Sungai Wariu at 

Bridge No.2 
47 1969-2015 524.90 

6 

Sungai 

Kadamaian at 

Tamu Darat 

47 1969-2015 490.20 

7 
Sungai Papar at 

Kaiduan 
48 1969-2016 468.86 

8 
Sungai Papar at 

Kogopon 
48 1969-2016 970.30 

9 
Sungai Pegalan 

at Ansip 
48 1969-2016 688.63 

4.2 Stationarity of data 

Annual maximum series of river flow are fitted into GEV 

distribution. The results are analysed according to individual 

location. Two models as demonstrate in (5) are built. In 

stationary model, probability weighted moment is employed 

as the initial value of MLE. The intercept parameters of MLE 

in non-stationary model are PWM estimates and the parameter 

based on covariate is initially set as zero. Covariate t in 

non-stationary model represents number of year observations. 

The GEV parameter estimates for both cases are shown in 

Table 2 and Table 3.  

Next, likelihood ratio test is employed to compare both 

models. In the presence case, the degree of freedom equals to 1. 

This suggesting that, at significance level of 5%, the critical 

value is 8415.32
95.0,1  . Likelihood ratio test at each site is 

summarized at Table 4. Since the value of likelihood ratio test 

at site 5 and site 6 are larger than critical value, null hypothesis 

is rejected. Hence, we do not have enough evidence to prove 

there is trend exiting at each sites except site 5 and site 6. 
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Table 2. GEV parameters (stationary model) 

Site 


 


 


 

1 21.33 10.61 -0.09 

2 21.22 5.06 0.08 

3 822.51 218.11 -0.18 

4 127.78 61.16 -0.19 

5 113.78 58.54 0.09 

6 204.29 80.58 0.08 

7 120.18 54.78 0.003 

8 256.72 119.89 0.02 

9 222.31 111.94 -0.02 

Table 3. GEV parameters (non-stationary model) 

Site 
0̂  1


 


 


 

1 23.01 -0.09 10.40 -0.06 

2 19.96 0.05 4.96 0.10 

3 735.46 2.34 204.00 -0.11 

4 87.77 1.97 28.69 0.14 

5 140.98 -0.59 52.96 0.17 

6 144.53 1.24 71.34 0.17 

7 141.86 -0.45 52.04 0.02 

8 303.51 -1.08 108.69 0.10 

9 206.51 0.38 114.26 -0.05 

 

Table 4. Likelihood ratio test 

Site Likelihood Ratio Test 0H  

1 0.19 Not rejected 

2 0.25 Not rejected 

3 1.55 Not rejected 

4 0.86 Not rejected 

5 4.78 Rejected 

6 6.92 Rejected 

7 3.10 Not rejected 

8 3.29 Not rejected 

9 0.29 Not rejected 

4.3 Model with common GEV parameters 

Over a homogeneous region, it is reasonable to assume that the 

individual sites follow the same distribution type with 

common shape parameter but different scale parameter [18]. 

In this study, a single model with common shape parameter 

that links all nine models together is build. This single model 

is expected to describe the probability distribution of the 

selected river flows within a homogeneous region.  

The model fitting technique in previous section is applied 

here as well. The initial value for shape parameter is the 

average value of 9 independent shape parameter estimates 

from Table 2, which is 02.0ˆ  . Since most of the cases are 

stationary, therefore only stationary model is considered. The 

two models consider in this section as stated below. 
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        (9) 

Hypothesis testing is given by 

 jH :0
 

:aH at least one 
j is different from other      (10) 

Since the difference in number of parameters between both 

models is 8, hence at 5% significance level, the critical value is 

5073.152
95.0,8  . The likelihood ratio test is 8289.7 which is 

smaller than the critical value. Thereby, 
0H is not rejected. 

There is no enough evidence to prove that there is at least one 

shape parameter is different from other. The single model with 

common shape parameter is able to describe the selected river 

sites. The respective parameter estimates as shown in Table 5.  

 

Table 5. GEV parameter estimates with 02.0ˆ   

Site j


 
j


 

1 20.83 10.32 

2 24.47 5.24 

3 809.36 215.52 

4 123.48 59.77 

5 116.99 60.61 

6 209.07 84.69 

7 120.19 54.77 

8 259.06 120.37 

9 220.99 111.37 

4.4 Return level estimate 

Application of GEV model fitting is to predict the return level 

that the annual maximum river flows exceeding the maximum 

observations in Table 1. MLE estimators in Section3.3 are 

substituted with p=0.1 and p=0.01 into (8) to estimate 10- and 

100-year of return level at each site. Return level estimates are 

shown in Table 6. 

 

Table 6. 10-,100-year return level estimates (m3) 

Site p=0.1 p=0.01 

1 44.00 68.08 

2 33.23 45.44 

3 1293.17 1795.85 

4 257.66 397.08 

5 253.06 394.43 

6 399.12 596.65 

7 243.25 370.89 

8 529.29 810.05 

9 471.00 730.75 

 

As comparing to maximum observations in Table 1, most of 

the maximum river flows are expected to be exceeded on 

average once in every 100-year except site 5, site 7 and site 8.   

5. Conclusion  

In this study, nine annual maximum river flows in Sabah are 

fitted into GEV distribution. Both stationary and 

non-stationary models are considered. The parameters are 

estimated by employing MLE with PWM as initial value. 

Likelihood ratio test suggests that most of the river flows are 

stationary except site 5 and site 6. A model with common 

shape parameter is found suitable to describe all the annual 

maximum river flows in this study. With this single model, 

most of the maximum river flows are expected to exceed, on 

average 100-year, except site 5, site 7 and site 8. In conclusion, 

modelling annual maximum river flow using GEV distribution 

with common shape parameter seems reasonable. For future 
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study, non-stationary case might take into consider when 

modelling the data set with common shape parameter. Spatial 

modelling as studied in [19] can be applied to improve the 

analysis as well. As shown in [20], Bayesian approach will be 

better parameter estimation as compared to traditional 

frequentist methods especially in uncertainty analysis.   
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