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Abstract: A Poisson model typically is assumed for count data. It is 

assumed to have the same value for expectation and variance in a 

Poisson distribution, but most of the time there is over-dispersion in 

the model. Furthermore, the response variable in such cases is 

truncated for some outliers or large values. In this paper, a Poisson 

regression model is introduced on truncated data. In this model, we 

consider a response variable and one or more than one explanatory 

variables. The estimation of regression parameters using the 

maximum likelihood method is discussed and the goodness-of-fit 

for the regression model is examined. We study the effects of 

truncation in terms of parameters estimation and their standard 

errors via real data.  
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1. Introduction 

There are many statistical applications, when the random 

variable Y represents counts. Examples of count data include 

the number of students drop out, the number of failures of an 

experiment per unit time, or the number of accidents on a 

highway per unit time. There are many studies dealing with 

count data and various distributions have been proposed for 

response or dependent variable, like Poisson distribution, 

negative binomial distribution, generalized Poisson 

distribution. 

A Poisson distribution is frequently assumed in order to 

analyze count data, which implies equality of the mean and 

the variance.  

       
     

  
           

              

But in practice, the observed variability often violates this 

theoretical assumption. It is often the case that the sample 

variance is greater than or less than the observed sample 

mean and it is classified as under- or over- dispersion, 

respectively (Cameron and Trivedi, 1998). Another type of 

over-dispersion relative to Poisson distribution is that in such 

cases there are some outliers or some large values which 

have effects on the variance and mean values. In this case, 

the variance value is greater than mean value and therefore 

we have over-dispersion in the model. To overcome over-

dispersion, we would like to cut the values of the response 

variable that are very big. In statistics, this is called 

truncation and because we want to truncate the values that 

are bigger than a constant, it is called a right truncation.  

In this article, the main objective is to explain how we can 

use Poisson regression model in right truncated data. In 

section 2, the Poisson regression model is defined and the 

likelihood function of Poisson regression model in right 

truncated data is formulated. In section 3, the parameter 

estimation is discussed using maximum likelihood method. 

In section 4, the goodness-of-fit for the regression model is 

examined and a test statistic for examining the dispersion of 

regression model in right truncated data is proposed. An 

example is conducted for a truncated Poisson regression 

model in terms of the parameter estimation, standard errors 

and goodness-of-fit statistic in section 5. 

2. The Model 

Let                 be a nonnegative integer-valued 

random variable from a Poisson distribution. Thus, the 

regression model is defined as 

            
      

  

   
                  

When there is interest in capturing any systematic variation in 

  , the value of    is most commonly placed within a loglinear 

model 

              

 

   

         

and   's are the independent variables in the regression 

model and   is the number of these independent variables. 

Consider variable    as a response variable which follows by 

a discrete distribution           . For some observations, 

the value of    may be truncated. If truncation occurs for the 

 th observation, we have       (right truncation) and that 

observation is omitted to analyze from the data set. Thus the 
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probability function for a right truncated variable    can be 

written as 

          
        

           
                     

where   is the number of observation after truncation. 

According to (3), we can write the log-likelihood function of 

the right truncated count regression model as follow 

                         

 

   

                             

By taking partial derivatives respect to  and equal to zero, 

we can obtain the parameter estimation. Furthermore, by 

replacement          into the Poisson distribution, its 

distributions with right truncation will be obtained as follow 

          
      

  

                  
 
        

        

and    is the truncation point for    which means that when 

      we truncate the response variable. 

We can obtain the log-likelihood function for Poisson 

regression model with right truncation as follow 

                

 

   

       

                   

 

       

       

where   is the number of observation after truncation. 

 

3. Parameter Estimation 

In this section, we obtain the parameters estimation by the 

ML method. By taking the partial derivative of the likelihood 

function and setting it equal to zero, the likelihood equation 

for estimating the parameter is obtained. Thus we obtain 

   

   

          
                   

 
       

              
 
       

    

 

   

                             

4. Goodness-of-fit Statistics 

For the count regression models, a measure of goodness of fit 

may be based on the deviance statistic   defined as 

                                              

where               and               are the model’s 

likelihood evaluated respectively under     and   . The log-

likelihood function is available in equation (6). 

For an adequate model, the asymptotic distribution of the 

deviance statistic   is chi-square distribution with       

degrees of freedom. Therefore, if the value for the deviance 

statistic   is close to the degrees of freedom, the model may 

be considered as adequate. When we have many regression 

models for a given data set, the regression model with the 

smallest value of the deviance statistic   is usually chosen as 

the best model for describing the given data. 

In many data sets, the   
 
’s may not be reasonably large and 

so the deviance statistic   may not be suitable. Thus, the log-

likelihood statistic               can be used as an alternative 

statistic to compare the different models. Models with the 

largest log-likelihood value can be chosen as the best model 

for describing the data under consideration. 

When there are several maximum likelihood models, one can 

compare the performance of alternative models based on 

several likelihood measures which have been proposed in the 

statistical literature. The AIC is the most regularly used 

measure. The AIC is defined as 

               

where l denotes the log likelihood evaluated under   and   

the number of parameters. For this measure, the smaller the 

   , the better the model is. 

5. An Application 

The state wildlife biologists want to model how many fish 

are being caught by fishermen at a state park. Visitors are 

asked how long they stayed, how many people were in the 

group, were there children in the group and how many fish 

were caught. Some visitors do not fish, but there is no data 

on whether a person fished or not. Some visitors who did 

fish did not catch any fish so there are excess zeros in the 

data because of the people that did not fish. We have data on 

250 groups that went to a park.  Each group was questioned 

about how many fish they caught (     ), how many 

children were in the group (     ), how many people were in 

the group (       ), and whether or not they brought a 

camper to the park (      ). 

We will use the variables child, persons, and camper in our 

model. Table 1 shows the descriptive statistics of using 

variables and also the        variable has two values, zero 

and one as Table 2. 
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Table 1: Descriptive Statistics 

Variable Mean Std Dev Min Max Variance 

Count 3.296 11.635028 0 149 135.373879 

Child 0.684 0.850315 0 3 0.7230361 

Persons 2.528 1.112730 1 4 1.2381687 

 

 

Table 2: Camper Variable 

Camper Frequency Percent 

0 103 41.2 

1 147 58.8 

 

 

Figure 1 shows the histogram of the       variable and it is 

clear that we have zero-inflation problem, also we have few 

big values that we are interested to truncate them. 

 

We have considered the model as follow 

                                     
                    

Furthermore, we put two truncation points,          . 

Table 3 shows the estimation of the parameters according to 

different truncation constants. Also, the      and     are 

presented as the goodness-of-fit measures. 

According to the truncation points, there is       truncated 

data when     . It means that 22.8% of the values of the 

response variable (     ) is         and the rest (77.2%) of 

the values of the response variable is greater than   that is 

truncated in the model. Also the percentage of the truncation 

for      is    . Furthermore, the values of the 

independent variables (                    ) are 

truncated for those values of response variable which is 

truncated. For example, the 25
th

 value of the response 

variable is           , and the values of the independent 

variables are as follow 

                                 

So we have to truncate these values of the independent 

variables because the value of their response variable should 

be truncated (                        ). 

Figure 1: Histogram of the response variable 
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Table 3: Parameter Estimation 

parameter           

   

-1.5642 

(0.3153) 

-1.7486 

(0.2605) 

   

0.4382 

(0.2160) 

0.7601 

(0.1727) 

   

0.6343 

(0.1269) 

0.7245 

(0.0883) 

   

-1.4224 

(0.2162) 

-1.2621 

(0.1462) 

     363.7 516.5 

    371.7 524.5 

 

6. Conclusion 

In this article we want to show that the Poisson regression 

model can be used to fit right truncated data. The Poisson 

regression model with right truncation (TPR) is fitted to 

these real data. The results from the fish data are summarized 

in Table 1-3. The goodness-of-fit measures are presented in 

the Table 3 according to different truncation points and it is 

obvious that we have a smaller value for      or     when 

the percentage of truncation increase and that is because of 

the number of the data which are used in the model. 
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