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Abstract: A Poisson model typically is assumed for count data. It is
assumed to have the same value for expectation and variance in a
Poisson distribution, but most of the time there is over-dispersion in
the model. Furthermore, the response variable in such cases is
truncated for some outliers or large values. In this paper, a Poisson
regression model is introduced on truncated data. In this model, we
consider a response variable and one or more than one explanatory
variables. The estimation of regression parameters using the
maximum likelihood method is discussed and the goodness-of-fit
for the regression model is examined. We study the effects of
truncation in terms of parameters estimation and their standard
errors via real data.
Keywords: Poisson truncation,
parameter estimation.
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1. Introduction

There are many statistical applications, when the random
variable Y represents counts. Examples of count data include
the number of students drop out, the number of failures of an
experiment per unit time, or the number of accidents on a
highway per unit time. There are many studies dealing with
count data and various distributions have been proposed for
response or dependent variable, like Poisson distribution,
negative  binomial distribution, generalized Poisson
distribution.

A Poisson distribution is frequently assumed in order to
analyze count data, which implies equality of the mean and
the variance.
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But in practice, the observed variability often violates this
theoretical assumption. It is often the case that the sample
variance is greater than or less than the observed sample
mean and it is classified as under- or over- dispersion,
respectively (Cameron and Trivedi, 1998). Another type of
over-dispersion relative to Poisson distribution is that in such
cases there are some outliers or some large values which
have effects on the variance and mean values. In this case,

the variance value is greater than mean value and therefore
we have over-dispersion in the model. To overcome over-
dispersion, we would like to cut the values of the response
variable that are very big. In statistics, this is called
truncation and because we want to truncate the values that
are bigger than a constant, it is called a right truncation.

In this article, the main objective is to explain how we can
use Poisson regression model in right truncated data. In
section 2, the Poisson regression model is defined and the
likelihood function of Poisson regression model in right
truncated data is formulated. In section 3, the parameter
estimation is discussed using maximum likelihood method.
In section 4, the goodness-of-fit for the regression model is
examined and a test statistic for examining the dispersion of
regression model in right truncated data is proposed. An
example is conducted for a truncated Poisson regression
model in terms of the parameter estimation, standard errors
and goodness-of-fit statistic in section 5.

2. The Model

Let Y;,i =1,2,3,..,n be a nonnegative integer-valued
random variable from a Poisson distribution. Thus, the
regression model is defined as
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When there is interest in capturing any systematic variation in
A;, the value of A; is most commonly placed within a loglinear
model

m

log() = ) ;@)

j=1

and B;'s are the independent variables in the regression
model and m is the number of these independent variables.

Consider variable Y; as a response variable which follows by
a discrete distribution Pr(Y; = y;) . For some observations,
the value of Y; may be truncated. If truncation occurs for the
ith observation, we have Y; > y; (right truncation) and that
observation is omitted to analyze from the data set. Thus the
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probability function for a right truncated variable Y; can be
written as

i 0
fT()’iiei)=1 ASZL)

IR gk (3)
—Pr(Y; = y)

where k is the number of observation after truncation.
According to (3), we can write the log-likelihood function of
the right truncated count regression model as follow

k
log L(6;;y;) = Z[log f(i;6:)

—log(1-Pr;zy))] @

By taking partial derivatives respect to & and equal to zero,
we can obtain the parameter estimation. Furthermore, by
replacement f(y;; 6;) into the Poisson distribution, its
distributions with right truncation will be obtained as follow
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and t; is the truncation point for y; which means that when
Y; > t; we truncate the response variable.

We can obtain the log-likelihood function for Poisson
regression model with right truncation as follow

k
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where k is the number of observation after truncation.

3. Parameter Estimation

In this section, we obtain the parameters estimation by the
ML method. By taking the partial derivative of the likelihood
function and setting it equal to zero, the likelihood equation
for estimating the parameter is obtained. Thus we obtain

0B 1- yi=ti+1 P(Y; = yilx) ’
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4. Goodness-of-fit Statistics

For the count regression models, a measure of goodness of fit
may be based on the deviance statistic D defined as

D = —2[log L(6; 1) —log L(Bi;v:)] ()

where logL(0;;%;) and logL(®;y;) are the model’s
likelihood evaluated respectively under 8; and y;. The log-
likelihood function is available in equation (6).

For an adequate model, the asymptotic distribution of the
deviance statistic D is chi-square distribution withn —k — 1
degrees of freedom. Therefore, if the value for the deviance
statistic D is close to the degrees of freedom, the model may
be considered as adequate. When we have many regression
models for a given data set, the regression model with the
smallest value of the deviance statistic D is usually chosen as
the best model for describing the given data.

In many data sets, the {i,’s may not be reasonably large and
so the deviance statistic D may not be suitable. Thus, the log-
likelihood statistic log L(®;; y;) can be used as an alternative
statistic to compare the different models. Models with the
largest log-likelihood value can be chosen as the best model
for describing the data under consideration.

When there are several maximum likelihood models, one can
compare the performance of alternative models based on
several likelihood measures which have been proposed in the
statistical literature. The AIC is the most regularly used
measure. The AIC is defined as

AIC = —21 + 2p

where | denotes the log likelihood evaluated under p and p
the number of parameters. For this measure, the smaller the
AIC, the better the model is.

5. An Application

The state wildlife biologists want to model how many fish
are being caught by fishermen at a state park. Visitors are
asked how long they stayed, how many people were in the
group, were there children in the group and how many fish
were caught. Some visitors do not fish, but there is no data
on whether a person fished or not. Some visitors who did
fish did not catch any fish so there are excess zeros in the
data because of the people that did not fish. We have data on
250 groups that went to a park. Each group was questioned
about how many fish they caught (count), how many
children were in the group (child), how many people were in
the group (persons), and whether or not they brought a
camper to the park (camper).

We will use the variables child, persons, and camper in our
model. Table 1 shows the descriptive statistics of using
variables and also the camper variable has two values, zero
and one as Table 2.
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Table 1: Descriptive Statistics

Variable | Mean | StdDev | Min | Max | Variance
Count | 3.296 | 11.635028 [ O 149 | 135.373879
Child | 0.684 | 0.850315 0 3 0.7230361

Persons | 2.528 | 1.112730 1 4 1.2381687

Table 2: Camper Variable

Camper | Frequency | Percent
0 103 41.2
1 147 58.8

Figure 1 shows the histogram of the count variable and it is
clear that we have zero-inflation problem, also we have few
big values that we are interested to truncate them.

We have considered the model as follow

log A = by + bycamper + b,persons + bschild ,
logit ¢ = ay + a,child

Furthermore, we put two truncation points, t; = 3,t, = 5.
Table 3 shows the estimation of the parameters according to
different truncation constants. Also, the —2LL and AIC are
presented as the goodness-of-fit measures.

According to the truncation points, there is 22.8% truncated
data when t; = 3. It means that 22.8% of the values of the
response variable (count) is 0,1,2,3 and the rest (77.2%) of
the values of the response variable is greater than 3 that is
truncated in the model. Also the percentage of the truncation
for t, =5 is 12%. Furthermore, the values of the
independent  variables  (camper, persons, child) are
truncated for those values of response variable which is
truncated. For example, the 25" value of the response
variable is count,s = 30, and the values of the independent
variables are as follow

camperys = 1,persons,s = 3, child,s =0
So we have to truncate these values of the independent

variables because the value of their response variable should
be truncated (count,s > truncation point).
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Figure 1: Histogram of the response variable
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Table 3: Parameter Estimation

parameter t; =3 t, =5
-1.5642 -1.7486
b,
(0.3153) (0.2605)
0.4382 0.7601
b,
(0.2160) (0.2727)
0.6343 0.7245
b,
(0.1269) (0.0883)
-1.4224 -1.2621
bs
(0.2162) (0.1462)
—2LL 363.7 516.5
AlC 371.7 524.5

6. Conclusion

In this article we want to show that the Poisson regression
model can be used to fit right truncated data. The Poisson
regression model with right truncation (TPR) is fitted to
these real data. The results from the fish data are summarized
in Table 1-3. The goodness-of-fit measures are presented in
the Table 3 according to different truncation points and it is
obvious that we have a smaller value for —2LL or AIC when
the percentage of truncation increase and that is because of
the number of the data which are used in the model.
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